Electronic Supplementary Information

Photoinduced hole transfer from tris(bipyridine)ruthenium dye to a high-valent ironbased water oxidation catalyst

Sergii I. Shylin,*^a Mariia V. Pavliuk,^a Luca D'Amario,^{a,b} Igor O. Fritsky*^{c,d} and Gustav Berggren*^a

^a Department of Chemistry – Ångström Laboratory, Uppsala University, P.O. Box 523, 75120
Uppsala, Sweden. E-mail: sergii.shylin@kemi.uu.se; gustav.berggren@kemi.uu.se
^b Physics Department, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
^c Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601
Kiev, Ukraine. E-mail: ifritsky@univ.kiev.ua
^d PBMR Labs Ukraine, Murmanska 1, 02094 Kiev, Ukraine

Figure S1. (a) Turnover frequency (TOF) dependence on the concentration of the photosensitizer for photochemical water oxidation. Concentrations of $[Fe^{IV}(L-6H)]^{2-}$ and $S_2O_8^{2-}$ were 1 µM and 2 mM respectively. (b) TOF dependence on the concentration of the sacrificial electron donor. Concentrations of $[Fe^{IV}(L-6H)]^{2-}$ and $[Ru(bpy)_3]^{2+}$ were 1 µM and 0.3 mM. All experiments were done in borate buffer (0.1 M, pH 8.0).

Figure S2. Dynamic light scattering (DLS) correlation function $G_2(\tau)$ for the solution containing $[\text{Ru}(\text{bpy})_3]^{2+}$ (0.2 mM), $S_2O_8^{2-}$ (2 mM), and $[\text{Fe}^{IV}(L-6H)]^{2-}$ (0.01 mM) in borate buffer (pH 8.0) recorded after >300 turnovers. No particles are observed since $G_2(0) \sim 0.11$ (for heterogeneous systems, typical $G_2(0)$ is 0.6÷1.0). The size measurement range was 0.3 nm – 10 µm.

Figure S3. Traces of oxygen evolution for $[Fe^{IV}(L-6H)]^{2-}$ (1 µM) and FeCl₃ (1 µM). The latter was used as a precatalyst giving catalytically active hematite nanoparticles at pH 8.0. Concentrations of $[Ru(bpy)_3]^{2+}$ and $S_2O_8^{2-}$ were 0.2 mM and 2 mM respectively. The background oxygen trace is shown in grey. All experiments were done in borate buffer (0.1 M, pH 8.0).

Figure S4. Kinetic traces of $[Ru(bpy)_3]^{2+}$ luminescence at 650 nm for solutions containing $[Ru(bpy)_3](ClO_4)_2$ (0.04 mM), Na₂S₂O₈ (0.4 mM) with and without the catalyst $[Fe^{IV}(L-6H)]^{2-}$ (2 μ M). Fits are shown in black.

Cage escape yield

The efficiency of charge separation, or cage escape yield, was estimated based on the following mechanistic model:

$$[Ru(bpy)_{3}]^{2+} + hv \rightarrow [Ru(bpy)_{3}]^{2+*}$$
(S1)

$$[Ru(bpy)_{3}]^{2+*} + S_{2}O_{8}^{2-} \rightarrow \{[Ru(bpy)_{3}]^{2+\cdots}S_{2}O_{8}^{2-}\}^{*} \rightarrow [Ru(bpy)_{3}]^{3+} + SO_{4}^{2-} + SO_{4}^{*-}$$
(S2)

$$\{[Ru(bpy)_{3}]^{2+\cdots}S_{2}O_{8}^{2-}\}^{*} \rightarrow [Ru(bpy)_{3}]^{2+} + S_{2}O_{8}^{2-}$$
(S3)

$$[Ru(bpy)_{3}]^{2+} + SO_{4}^{*-} \rightarrow [Ru(bpy)_{3}]^{3+} + SO_{4}^{2-}$$
(S4)

It is proposed¹ that the excited triplet state of $[Ru(bpy)_3]^{2+*}$ and $S_2O_8^{2-}$ form a complex ("cage") that is followed by O–O bond cleavage yielding $[Ru(bpy)_3]^{3+}$, SO_4^{2-} and SO_4^{--} (eq. S2). The generated sulfate radical is available for generation of the second equivalent of $[Ru(bpy)_3]^{3+}$. However, the complex may also dissociate into $[Ru(bpy)_3]^{2+}$ and $S_2O_8^{2-}$, thus without forming charge separated products (eq. S3). Within this model, the cage escape yield can be calculated as amount of $[Ru(bpy)_3]^{2+}$ reacting with SO_4^{--} (eq. S4) relative to amount of $[Ru(bpy)_3]^{2+}$ giving the complex $\{[Ru(bpy)_3]^{2+...}S_2O_8^{2-}\}^*$:

$$\eta = \frac{\Delta OD_{\mu s} - \Delta OD_{ns}}{\Delta OD_{ns}} = \frac{-0.07 + 0.04}{-0.04} = 0.75,$$

where ΔOD_{ns} and $\Delta OD_{\mu s}$ stand for transient optical density derived at 420 nm (absorption of $[\operatorname{Ru}(\operatorname{bpy})_3]^{2+}$) at 700 ns and 80 µs respectively (Figure 4c in the main text, black trace).

[1] A. L. Kaledin, Z. Huang, Y. V Geletii, T. Lian, C. L. Hill and D. G. Musaev, J. Phys. Chem. A, 2010, **114**, 73-80.