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1. 1H-NMR and 13C-NMR of 1 and PN
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Figure S1: 1H NMR (300 MHz, 298 K) of the final product PN in (CD3)2CO.
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Figure S2: 13C NMR (300 MHz, 298 K) of the final product PN inCDCl3.
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Figure S3: 1H-NMR (300 MHz, 298 K) of compound 1 in CDCl3.
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Figure S4: 1H-NMR (300 MHz, 298 K) of compound 1 in CDCl3 zoom from 4.6 ppm to 3.2 ppm.
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Figure S5: 13C-NMR (300 MHz, 298 K) of compound 1 in CDCl3.
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2. IR compound 1, PN and IR of PN@NiO
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Figure S6: IR spectrum of PN (blue) and compound 1 (orange) (bottom) and zoom-in of IR spectrum (top). The C=O stretch in 
compound 1 is blue shifted compared to PN. PN contains two different C=O stretch signals: one from the ester functionality 
and one originates from the conjugated acid which is visible as a weaker shoulder peak next to 1713 cm-1.
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Table S1: IR absorptions and Interpretation for compound 1.

Absorption (cm-1) Appearance Interpretation
3060 br OH (COOH)
2924 m CH2 (ethylene glycol)
2226 w CN
1749 s C=O (ester)

Table S2: IR absorptions and Interpretation for compound PN.

Dye adsorption onto NiO

Figure S8 shows the ATR-IR spectrum of the PN dye and of the PN dye adsorbed onto NiO. In this 
spectrum the carbonyl region shows two signals that can be assigned to the ester carbonyl (at 1730 
cm-1) and of the of the acidic carboxyl group at 1680 cm-1 (see Figure S7). Upon adsorption the νC=O 

band of the acidic group of the dye at 1680 cm-1 is lost as can be seen in the spectrum (grey line). This 
indicates that the dye is indeed chemisorbed to the NiO surface via the carboxyl group.
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Figure S7: The structure of PN with the carbonyl groups highlighted of the ester (orange) and of the carboxylic acid (green)

Absorption Appearance Interpretation
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Figure S8: IR spectrum of PN (blue), PN adsorbed onto NiO (grey), and NiO (yellow) (top) and zoom in of IR spectrum (bottom) 
with the C=O stretch vibration highlighted. The arrow points to the C=O stretch vibration that originates from the 
conjugated acid (COOH) that is absent when PN is adsorbed onto NiO.
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3. CV and DPV of PN and P1 , RING4+ and MV2+
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Figure S9: Cyclic voltammogram of P1 start from 0.2 V, upper limit at 1.6 V and lower limit at -0.8 V with scan rate 0.1 V s-1 
(left) and differential pulse voltammogram measured from 0 to 1.7 V (right) in 0.1 M TBAPF6 in MeCN using glassy carbon as 
working electrode, leakless Ag/AgCl as reference electrode and Pt-wire as counter electrode.   
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Figure S10: Cyclic voltammogram of P1 start from 0.2 V, upper limit at 1.7 V with scan rate 0.1 V s-1 in presence of ferrocene 
(first wave) in 0.1 M TBAPF6 in MeCN using glassy carbon as working electrode, leakless Ag/AgCl as reference electrode and 
Pt-wire as counter electrode. 

In order to determine the position of the redox waves, ferrocene was added as a redox standard. 
Since it is know that the ferrocene couple has a potential of 630 mV versus NHE, the redox potentials 
of the P1 and the PN dye could be determined versus NHE.1 The reported electrochemical properties 
in Table 1 are determined from these voltammograms.
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Figure S11: Cyclic voltammogram of PN start from 0.2 V, upper limit at 1.6 V and lower limit at -0.8 V with scan rate 0.1 V s-1 
in 0.1 M TBAPF6 in MeCN using glassy carbon as working electrode, leakless Ag/AgCl as reference electrode and Pt-wire as 
counter electrode.
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Figure S12: Differential pulse voltammogram of PN measured from 0 to -1.3 (left) and from 0 to 1.7 V (right) using glassy 
carbon as working electrode, leakless Ag/AgCl as reference electrode and Pt-wire as counter electrode.
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MV2+ and RING4+ 
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Figure S13: Cyclic voltammogram of MV2+ start from 0.2 V, upper limit at 0.2 V and lower limit at -0.8 V with scan rate 0.1 V 
s-1 in 0.1 M TBAPF6 in MeCN using glassy carbon as working electrode, leakless Ag/AgCl as reference electrode and Pt-wire 
as counter electrode.
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Figure S14: Cyclic voltammogram of RING4+ start from 0.05 V, upper limit at 0.2 V and lower limit at -0.9 V with scan rate 0.1 
V s-1 in 0.1 M TBAPF6 in MeCN using glassy carbon as working electrode, leakless Ag/AgCl as reference electrode and Pt-wire 
as counter electrode.
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Figure S15: Differential Pulse Voltammogram of RING4+ (black) MV2+ (blue) and RING4+ with DNP (red) start from 0.3 V and 
lower limit at -0.95 V with scan rate 0.005 V s-1 in 0.1 M TBAPF6 in MeCN using glassy carbon as working electrode, leakless 
Ag/AgCl as reference electrode and Pt-wire as counter electrode.

Table S3: E1/2 determined from CV and DPV of MV2+, RING4+ and RING4+/2+@DNP. 

Compound Reduction potential E1/2 (V 
versus NHE)

MV2+/+• -209
RING4+/2+• -78.9
RING4+/2+•@DNP -134

The cyclic voltammograms of MV2+ and RING4+ are shown in Figure S13 and Figure S14 respectively. 
The voltammogram of MV2+ is characterized by two reversible waves of which the first wave 
corresponds to the MV2+/+•  redox couple and the second wave corresponds to the MV+•/0 transition. 
In case of the ring, two separate waves are observed as well, however both waves are characterized 
by a two electron reduction since there are two identical MV units present in this molecule as was 
established by Stoddart and coworkers.2 The first wave is assigned to the RING4+/2+• couple and the 
second wave corresponds to the two electron reduction of RING2+• to the neutral RING0. This means 
that electrochemically the RING3+•  cannot be observed, however, photochemically this oxidation state 
is accessible since this is a one electron process. 

The observed E1/2 values are summarized in Table S3. This shows that for the first reduction of 
MV2+/+• the E1/2 is at a more negative potential than the E1/2 of RING4+/2+•. Figure 6 shows the recorded 
Differential Pulse Voltammograms in which an overlap region is visible between reduction peaks of 
MV2+ and RING4+ indicating that reduction of MV2+ by the ring is indeed possible. Interestingly, the E1/2 

of RING4+/2+• becomes more negative when it is associated to DNP by approximately 50 mV. Although 
DSSC are not at equilibrium we can estimate how much RING3+ can reduce MV2+ using the Nernst 
equation at equilibrium.3
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If we consider the following reaction:

RING3+ + MV2+ <-> RING4+ + MV+•

The ratio between RING4+/ RING3+ can be determined with

𝐿𝑜𝑔
𝑅𝐼𝑁𝐺4 +

𝑅𝐼𝑁𝐺3 +
= 8.47 ∆𝐸°'

This gives us   = 0.08

𝑅𝐼𝑁𝐺4 +

𝑅𝐼𝑁𝐺3 +

0.08 · 75 µM = 6 µM

Keq = [RING4+][ MV+•]/[RING3+][MV2+]

Keq is then found to be 12.6 
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4. Fluorescence binding study
Binding study Ring RING4+ (guest) to dye PN (host)
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Figure S16: Corrected fluorescence quenching of PN naphthyl fluorescence at 344 nm upon excitation at 310 nm by addition 
of ring to determine the binding constant Kass.
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Figure S17: The absorbance of the DNP unit in PN (solid line) and its structured fluorescence  (dotted line).
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5. NMR studies on PN–ring complexation
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Figure S18: Apparent NMR shift and broadening of the signals of the PN dye upon addition of ring in (CD3)2CO. Spectrum 1 
shows spectrum before addition of ring and spectrum 6 with 5 equivalents of ring. The naphthyl proton signals at 6.9 ppm 
broaden and shift to 6.6 ppm. The NMR shifts of unbound ring in d-acetone are represented in spectrum 7.
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Figure S19: DOSY spectra of free PN dye (purple), free ring RING4+ (blue) and of the pseudorotaxane, complexed ring to PN 
dye. Since the ring and dye signals are on the same line, they have diffusion coefficient and therefore this belongs to the 
same species, namely the pseudorotaxane.

Table S4: Apparent diffusion coefficient derived from the DOSY data and their calculated radius. The radius was determined 
via the Stokes-Einstein equation.

PN RING4+ PN–(RING4+)2

-LogD 8.99 8.90 9.26
D (m2 s-1) 1.02E-9 1.26E-9 5.50E-10
Radius (nm) 0.7 0.7 1.3



18

6. Excited State quenching study
Quenching of the dye by the ring (quencher)
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Figure S20: Fluorescence quenching of the excited state of PN at 630 nm upon excitation at 450 nm by addition of RING4+ 
(quencher).
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7. I–V curve PN 0.3% ring and MV
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Figure S21: I–V curve for the DSSCs constructed of the PN dye and the 0.3% ring in 25 mM MV electrolyte.

Table S5: Solar cell results for the DSSCs constructed of the PN dye and the 0.3 mol% RING4+/3+ in 25 mM MV2+/+ electrolyte. 
VOC = open-circuit voltage; Isc = short-circuit current; FF= fill factor; Pin is the power put into the system (W m-2); Pmax is the 
maximum power generated by the cell (W m-2); η=power conversion efficiency as %.

Voc Isc Vmp Imp FF Pin Pmax η(%)
1.79E-01 1.12E-06 0.112305 6.99E-07 3.91E-01 0.023562 0.023562 3.33E-04



20

8. DSSC with varying RING4+ concentration

Cells in absence of MV2+

DSSC in absence of MV2+ with Ring (75 µM) in 1 M LiTFSI was prepared with MeCN inside a nitrogen 
filled glovebox as is described in the experimental section.

The photovoltaic results are shown in Figure S22. In case of P1 a very small negative photocurrent 
density is observed of 0.26 µA cm-2 which is 4 times smaller than the current densities that are 
observed for the RING4+ MV2+ mix in the P1 cell and 40 times smaller than the best performing PN cell. 
This lower current is due to low electrolyte concentration, (75 µM ring in this case instead of 25 mM 
MV2+ with 0.3% ring).

In case of the cell consisting of PN positive photocurrents are observed. This most likely due to  
capacitor effects rather than the solar cell function. When this cell is irradiated for a longer period of 
time, the positive current preserves on decreasing indicating that capacitance is built up (Figure 23). 
As there are  1.61 × 10-8 mol cm-2 dye molecules on the NiO, our cell contains 3.1 nmol dye and only 
0.32 nmol RING4+/3+ under the conditions applied (see SI 9 for this determination). As the Kass is high 
for ring to the DNP unit, most of the rings will be associated to the dye molecules at the surface as we 
have a 10 times excess of dye. Effectively there is no redox mediator and therefore the excited dye 
injects its electron in the NiO trap states rather than the redox mediator for which a positive current 
is observed. 
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Figure S22: Observed photocurrent densities upon irradiation of the DSSC containing 75 µM RING4+/3+ in 1 M LiTFSI for P1 
(black line) and PN (red line).
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Figure S23: Decrease of photocurrent observed for DSSC containing PN as a dye with 75 µM RING4+/3+ in 1 M LiTFSI.

From these experiments it becomes clear that the presence of MV2+ is essential for the DSSC to 
function. 

If RING4+ concentration is increased, the dye leaches. Photocurrents that can be measured are 
extremely low in this case. The figure below gives an example of a chronoamperometry 
measurement with 5% RING4+. Dye leach is observed as soon as the electrolyte in introduced into the 
cell with concentration above 1%.
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Figure S24: Observed photocurrent densities upon irradiation of the DSSC containing 5% (1.25 mM) RING4+/3+ in 24.75 mM 
MV2+/+ with 1 M LiTFSI supporting electrolyte in case of PN dye.
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9. Dye coverage

The dye coverage on NiO was determined by dye desorption. Since experiments using base (TBAOH) 
led to complete dye decomposition and acid treatment did not lead to full desorption, a 
concentrated solution of RING4+ was used (20 mM, 10 mL) to induce dye leach. The sensitized 
electrode was  sonicated for 30 minutes. From this mixture 5 mL was centrifuged. From this, 2 mL 
was used to record the UV absorption. The amount of dye was determined via the extinction 
coefficient using Lambert-Beer law.

A(λ) = ε · c · l

Using this approach it was determined that the dye coverage is 1.61 × 10-8 mol cm-2.

Completion of dye desorption was confirmed as no orange color was observed at the NiO. 
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