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Figure S1. Additional materials characterization for 3Ni-Al/GC (left) and 3Ni-Ga/HOPG (right).
XRD patterns (top, middle) indicate the presence of cubic Ni, amorphous Al, and monoclinic
Gay0s; (for clarity, only the most prominent Ga,0Os lattice planes are labeled). EDX maps
(bottom) portray spatially isolated Ni (red) and Al or Ga (green) stripes; the carbon solid support
is blue. EDX obtained using a 5 keV electron beam and ~12 mm working distance.
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Figure S2. Sample Faradaic efficiency plots including the competitive product Hy,
demonstrating charge balance. In this case, experiments using non-mixed 3Ni-Al/GC and 3Ni-
Ga/HOPG electrodes primarily generated H, from the aqueous environment. Electrolysis
experiments were conducted at —1.38 V vs. Ag/AgCl in pH 4.5, COz-saturated K.SO, electrolyte.
Subsequent electrolyses also achieved charge balance when considering Ha.
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Figure S3. Additional materials characterization for NisAI/HOPG. EDX spectroscopy (left)
complements XRD data and confirms the nominal bulk stoichiometry. XPS spectra (right) point

to a predominantly oxidized surface in which only a small portion of Ni is metallic. EDX obtained

using a 5 keV electron beam and ~12 mm working distance.
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Figure S4. Additional materials characterization for NisAI/RVC. EDX spectroscopy (left)
complements XRD data and confirms the nominal bulk stoichiometry. XPS spectra (right) point
to a completely oxidized surface when considering both Ni and Al. EDX obtained using a 5 keV
electron beam and ~12 mm working distance.
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Figure S5. Bulk material and surface characterization of NizGa on RVC solid support. XRD (top
left) confirms the nominal assignment, while XPS (top right; bottom) suggests that the surface of
the film consists of a mixture of metallic and oxidized Ni and Ga. SEM images and EDX spectra

for NisGa/RVC were previously reported.!
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Figure S6. Materials characterization of the Ni half of 3Ni-Ga/RVC. XRD (top left) reveals that
the bulk material consists of cubic Ni in the metallic state, while XPS data suggest that the
surface is comprised of a mixture of metallic Ni and Ni(ll) oxides (bottom). SEM imaging shows
that Ni embedded within the porous carbon framework has a rough surface structure (top right),
which diverges from the typical smooth platelet appearance of other materials deposited on
RVC support.
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Figure S7. Materials characterization of the Ga halves of 3Ni-Ga/GC (left) and 3Ni-Ga/RVC
(right). Per XRD analysis (top), both species are comprised of monoclinic Ga,0s, and XPS

(middle) suggests that the surfaces are predominantly oxidized with minor contributions from Ga
metal. SEM imaging (bottom) reveals that both Ga halves appear to be made up of flat platelet

structures, a common morphological motif on both carbon supports.?
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Figure S8. Faradaic efficiencies for CO, reduction products generated using Ga-based films
(actual composition = monoclinic Ga;03) on GC, RVC, and HOPG solid supports. While
Faradaic efficiencies differ, product distribution remains constant. Electrolysis experiments were
conducted at —1.38 V vs. Ag/AgCl in pH 4.5, CO,-saturated K,SO. electrolyte.
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Figure S9. Faradaic efficiencies for CO, reduction products generated during potential (left) and
pH (right) dependence experiments using Ga/RVC; the lower plots zoom-in on liquid-phase,
minor products. CO, the major carbon-containing product, is maximized at —1.38 V vs. Ag/AgCI
and pH 4.5 electrolyte, though high CO Faradaic efficiencies can be achieved across a range of

conditions. Materials characterization suggests that the Ga films are comprised of monoclinic

Gay0s. For consistency, potential dependence experiments were conducted using pH 4.5, CO»-
saturated K>SO, electrolyte, while pH dependence experiments utilized an operating potential of
—1.38 V vs. Ag/AgCl.
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Figure S10. Post-electrolysis materials characterization of Ga drop-casted onto GC, RVC, and
HOPG substrates. XRD (top; high-intensity peaks labeled for clarity) analysis suggests that the
bulk films remain chemically stable, retaining their monoclinic Ga>Os structure. XPS (middle)
confirms surface stability, characterized by entirely or predominantly oxidized surfaces. SEM
(bottom) imaging verifies morphological and physical stability on the carbon supports.
Electrolysis experiments were conducted at —1.38 V vs. Ag/AgCl in pH 4.5, COz-saturated
K>SO, electrolyte.
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Table S1. Electrolysis products achieved during single-metal control experiments on various
carbon solid supports at —1.38 V vs. Ag/AgCI (0.1 M K2SQOy4, pH 4.5).

CcoO formate methanol

HOPG GC RVC | HOPG GC RVC | HOPG GC RVC

Ni 0 1.7 27.7 0.02 0.01 0.06 0.01 0.01 0.06

Ga 2.4 16.5 56.7 0.5 1.3 0.3 0.005 0.2 0.4

Al - 14.6 - - 0.5 - - 0 -
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Table S2. Summary of carbon-containing products achieved during CO; reduction using each
catalyst discussed herein. Electrolysis experiments were conducted at —1.38 V vs. Ag/AgCl in
0.1 M K2SOq4 (pH 4.5).

Faradaic Efficiency (H.O Environment)

Catalyst GC RVC HOPG Envilrjozrcl)ment
33% CO 33% CO 0.78% CO
o 1.9% 1-propanol 0.27% 1-propanol | 0.34% 1-propanol 49% CO
NeA 1.0% methanol 0.22% methanol 0.20% formate (GC)
0.75% formate 0.18% formate 0.15% methanol
3.3% CO
3Ni-Al - - -
0.3% formate
11.2% CO 26% CO 0.10% ethane SEZZ)C(;O
NisGa' 0.23% formate 1.0% formate 3.3% CO
0.06% methanol 0.10% methanol (HOPG)
6% CO 52% CO 0.075% formate
3Ni-Ga 0.7% formate 0.28% methanol -
0.045% methanol | 0.20% formate
16% CO 57% CO 2.4% CO
Gat 1.3% formate 0.42% methanol 0.52% formate 882/{)/5)0

0.20% methanol

0.32% formate

0.005% methanol

*GC data reported previously.?
TData reported previously.!

*XRD analysis suggests that Ga films employed in this study are comprised of monoclinic Ga20a.
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