ELECTRONIC SUPPORTING INFORMATION

for

Electronic spectra of ions of astrochemical interest: From fast overview spectra to high resolution

Jana Roithová,*^a Juraj Jašík,^b Jesus J. Del Pozo^a and Dieter Gerlich^c

- ^{a.} Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
- ^{b.} Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic.
- ^{c.} Department of Physics, University of Technology, 09107 Chemnitz, Germany.

Content

Experimental Setup, Figure S1	S2
Photodissociation of He-tagged ions in a w4PT, Figure S2	S2
Experimental Results	
Additional data for "Screening visPD spectra"	S6
(Figures S3 – S5)	
Table S1	S9
UV-PD spectrum of anthracene dication (Figure S6)	S12
Table S2 – S4	S12
Figure S7	S15
Theoretical Results	
Results of TD-DFT calculations (Table S5)	S16
Anharmonic IR spectra (Figure S8)	S17
Geometries and energetics of calculated ions (Table S6)	S18

Experimental Setup

Figure S1. ISORI instrument. For details see: Int. J. Mass Spectrom. 2013, 354, 204.

Photodissociation of He-tagged ions in a w4PT

Definition of σ

The frequency dependent photoabsorption cross section, σ , is usually defined via attenuation of a light beam passing an absorption cell containing the absorbing molecules at a density *n* (see Figure S2c). If I_0 is the intensity at the entrance, the intensity at the exit, *I*, is given by the Beer–Lambert law,

$$I = I_0 \exp(-\sigma n I). \tag{S1}$$

The intensity decays exponentially as a function of the product of the absorption cross section σ , the density n and the cell length l. The sensitivity of direct absorption techniques is primarily limited by intensity fluctuations of the light source requiring a relative intensity change of at least 0.001. The attenuation of light passing a trapped ion cloud is below 5×10^{-10} , assuming a cross section of 1 Å² and a column density of $n \ l \sim 5 \times 10^{6} \text{cm}^{-2}$. As an alternative, indirect absorption techniques have been developed that are based on monitoring an effect induced by the absorption of light ("action spectroscopy"). Such indirect techniques are many orders of magnitude more sensitive than direct absorption, but most of them do not provide directly absolute absorption cross sections.

Figure S2. Determination of absolute photo absorption cross sections. Panel a) shows the optical arrangement to transfer the laser or OPO beam into the trap and to test the beam profile at this distance by reflecting it to the detector in the upper left corner. Panel b) shows the wire quadrupole trap that allows us to squeeze the ion cloud (blue point) into the light beam (magenta circle). The upper part of panel c) illustrates the definition of the photo absorption cross section via the Beer–Lambert law (Eq. S1) while the lower part depicts our trapping experiment, where a certain number of mass selected He-complexes is confined in a cylinder with a diameter below 1 mm and is exposed for a time interval (here up to 0.9 s) to the homogeneous flow of photons. Panel d) Simple geometrical illustration for deriving the probability to hit one of the trapped ions if one exposes them to a fluence of a certain number of photons/cm².

Our approach, based on He-tagging in a cryogenic w4PT, is an elegant method to obtain σ just from counting (typically every s) the number of the trapped He-tagged ions with and without laser. To optimize the geometry, the ions are confined in a cylinder with a small diameter (see figure S2b) and exposed to a homogeneous fluence of photons, Φ . Measuring alternatively the number of helium complexes with and without radiation, one gets

$$N(\Phi) = N_0 \exp(-\sigma \Phi). \tag{S2}$$

This equation holds with the same cross section σ as introduced in Eq. 1, because the perturbation of the molecule by the attached He is negligible in most cases. Moreover, it is safe

to assume that, in the case of UV, vis or IR light, the absorption of a single photon always results in breaking the weak vdW bond.

The fluence Φ is the total number of photons per cm², the ion cloud has been exposed to. It is determined from the laser power or from the energy per OPO pulse, the irradiation time (or the number of light pulses) and from the geometry. In the present work we determine the mean fluence at the location of the trapped ions by deflecting the laser as illustrated in Fig. S2a and by measuring the effective diameter of the beam by closing iris 2 until the light detector shows 50% of the laser power (or energy). More accurate would be to permanently monitor the actual beam profile and its geometrical stability by reflecting a fixed fraction of the light beam. We also account for reflection and transmission loss by the mirrors and windows. In the present work, fluctuations of the light sources are taken into account by recording the energy per pulse (or power) behind the exit window of the instrument.

In practice, the number of complexes, $N(\Phi)$, remaining after exposing them to a laser fluence Φ , is described with the function

$$N(\Phi) = N_0 \left((1 - \beta) \, e^{\frac{\Phi}{\Phi_0}} + \beta \right), \tag{S3}$$

where the parameter β accounts for the fraction of trapped ions with the same mass which do not absorb light at the selected wavelength. In most cases these are isomers. The characteristic fluence, Φ_0 , is determined at the central frequency of the peak, ν_c , by varying Φ (laser power or the irradiation time). A typical example is shown in Figure 6. Using the units cm⁻¹ for v and mJ/cm² for Φ_0 one gets σ in cm² from

$$\sigma = \nu / (conv \Phi_0) \tag{S4}$$

with the conversion factor

$$conv = 0.001/1.602 \times 10^{-19} \times 8065.73 = 5.03423 \times 10^{19}$$
(S5)

For determining the cross section from a measured attenuation, one gets from Eqs. (S3) and (S4)

$$\sigma = -\frac{\nu}{conv \Phi} \ln \left[\left(\frac{N(\Phi)}{N_0} - \beta \right) / (1 - \beta) \right]$$
(S6)

As already mentioned above, $conv \times \Phi_0/v$ is the number of photons per cm², the ions have been exposed to. With the help of Figure S2d, a simple statistical consideration allows one to proof that σ is really the absorption cross section.

Accuracy and problems

In principle, our method to record absolute cross sections is not only fast (measurements like the one shown in Figure 6 can be done in less than 10 min) but it is also very precise, at least in principle. In an ideal linear quadrupole, the effective potential of the quadrupole trap can squeeze the ions into a cylinder with a diameter of 0.25 mm ($C_{14}H_{10}^{2+}$, 1 MHz, $V_0 = 100$ V). With the geometry shown in Fig. S2 the SuperK laser has been focused to a diameter of 0.35 mm resulting in a maximum spectral fluence of 10 mJ per cm² and per nm. With this fluence it is easy to fully saturate many transitions as shown in this paper.

In practice, several experimental difficulties hamper obtaining precise values of absolute cross sections. The measurements depend on the geometry of all relevant optical parts (especially the pointing stability of the light sources) which have to be therefore very stable. Also, we had problems with the precise localization of the ion cloud in some of our experiments. For example, small potential perturbations of the trap electrodes can push (or pull) the ion cloud away from the geometrical center line of the trap and reduce the effective fluence. The results in Fig. 2b and 2f show measurements with the same settings of the laser; however, within 2 hours, the effective fluence has been reduced. Readjustment of the relevant parameters can usually compensate the perturbations. In the case of surface problems ("patch effects") usually the electrodes have to be cleaned. The trapping conditions can also be improved for a few hours by turning off the cold head and warming up the electrodes to 50 K. It is important to mention that space charge effects play a role if one operates with ion densities of more than 10⁶ ions/cm³.

Under unfavorable conditions our measured absolute cross sections could differ by up to a factor 3. Usually, for a fixed arrangement of the laser etc. the results are reproducible with a statistical error of smaller than 5%. At the moment, this can be completely neglected in comparison with the systematic errors. In the present arrangement, the determination of the effective fluence is certainly the biggest problem, typically up to 50%. Errors from the calibrated laser power meter (< 5%) can be neglected. Most problematic is the exact position and the shape of the laser profile inside the trap and its overlap with the ions cloud. For reducing these uncertainties, we have increased the distance of the two lenses (from 75 to 77 mm), shifting the focus out of the trap and increasing the diameter of the slightly divergent light beam to 1.1 mm. This results in more stable conditions; however, it reduces the fluence by a factor of 10. Finally, the relative number of ions which do not absorb (β in Eq. 3), can introduce an error of up to 10 %. Overall, the results presented in this paper, have an uncertainty of up to a factor 2. Improving the experiment (cleaner or other trap electrodes, better optics, e.g. a beam profiler), our method can provide absolute cross sections with an accuracy better than 10%. This is also possible with the SuperK laser. The only additional uncertainty is the actual line width of the beam prepared with the AOTF filter.

Experimental Results

Figure S3. Overview photodissociation spectra of He-complexes of the indicated cations and dications generated by EI from benzo[ghi]perylene. Spectra recorded with different power levels of the SuperK laser are colour-coded.

Figure S4. Overview photodissociation spectra of He-complexes of the indicated cations and dications generated by EI from 1-pyrenecarboxylic acid and dibenzo[7]helicene. Spectra recorded with different power levels of the SuperK laser are colour-coded.

Figure S5. Helium tagging vis-PD spectra of $C_{13}H_9N^{2+}$ and $C_{13}H_8N^{2+}$ generated from acridine (upper panel) and $C_{24}H_{12}^{2+}$ generated from coronene.

Im Im<	1-P	yreneca	arboxylic acid										
Ir. m/z Ion Date File PO /% RF /% Dr./ nn/ nn nn <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nr	m/z	lon	Date	File	PO / %	RF / %	Dt / ms	n / nm	Dn /nm	att /%	fig	Note
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	247	$^{13}C^{12}C_{16}H_{10}O_{2}^{+}$	19.6.2018	vis11	100	20	800				2g	
3 246 $C_1 H_{10} O_2^{-1}$ 19.6.2018 vis07 50 20 100 44.4.5 18 76 5 246 $C_2 H_{10} O_2^{-1}$ 19.6.2018 vis08 100 20 100 444.5 18 36 2f 5 246 $C_1 H_{10} O_2^{-1}$ 19.6.2018 vis01 100 20 100 444.9 18 36 2f 7 229 $C_1 H_{5} O^{-2}$ 20.6.2018 vis01 100 20 100 1 2 3 229 $C_1 H_{5} O^{-2}$ 20.6.2018 vis12 50 20 800 44.4.9 18 36 2f 1 229 $C_1 H_{5} O^{-2}$ 20.6.2018 vis12 50 20 800 47.3 3 54 2h 2 229 $C_1 H_{5} O^{-1}$ 19.6.2018 vis14 50 20 100 474.3 3 93 2h 2 229 $C_1 H_{5} O^{-1}$ 19.6.2018 vis14 50 20 100 44.2.9 10.2	2	246	$C_{17}H_{10}O_{2}^{+}$	19.6.2018	vis06	100	20	100	445.0	21	62	2f	P=45uW
4 246 $C_{11}H_{10}O_2^{-1}$ 19.6.2018 vis08 100 30 100 444.5 18 76 Image: constraint of the state of the s	3	246	$C_{17}H_{10}O_{2}^{+}$	19.6.2018	vis07	50	20	100					
5 246 $C_1\gamma H_{10}O_2^+$ 19.6.2018 vis09 100 20 100 444.9 18 36 2f 7 229 $C_1\gamma H_3O^-$ 19.6.2018 vis01 100 20 800 Image: Constraint of the state of	4	246	$C_{17}H_{10}O_{2}^{+}$	19.6.2018	vis08	100	30	100	444.5	18	76		
6 246 $C_{11}H_{10}O_2^{-1}$ 19.6.2018 vis10 100 20 800 2f 7 229 $C_{11}H_9O^+$ 20.6.2018 vis01 100 20 100 P 100 and 50% 8 229 $C_{11}H_9O^+$ 20.6.2018 vis02 100 20 100 P 100 and 50% 9 229 $C_{11}H_9O^+$ 19.6.2018 vis13 25 20 100 466.3 4 28 1 229 $C_{11}H_9O^+$ 19.6.2018 vis13 25 20 100 466.9 5 50 P100 and 50% 2 29 $C_{11}H_9O^+$ 19.6.2018 vis14 50 20 100 474.3 3 93 2 29 $C_{11}H_9O^+$ 19.6.2018 vis01 100 20 800 438.0 20 23 24 2 201 $C_{10}H_9^{++}$ 19.6.2018 vis02 100 20 800 20	5	246	$C_{17}H_{10}O_{2}^{+}$	19.6.2018	vis09	100	20	100	444.9	18	36	2f	
7 229 $C_{17}H_9O^*$ 20.6.2018 vis01 100 20 100 P 100 and 50% 8 229 $C_{17}H_9O^*$ 20.6.2018 vis02 100 20 100 P 100 and 50% 9 229 $C_{17}H_9O^*$ 19.6.2018 vis12 50 20 800 2h P 100 and 50% 0 229 $C_{17}H_9O^*$ 19.6.2018 vis13 25 20 100 466.3 4 28 1 229 $C_{17}H_9O^*$ 19.6.2018 vis13 25 20 100 474.5 3 54 2h 2 229 $C_{17}H_9O^*$ 19.6.2018 vis14 50 20 100 474.3 3 93 4 229 $C_{17}H_9O^*$ 19.6.2018 vis01 100 20 800 438.0 20 23 24 5 201 $C_{16}H_{9^*}^*$ 19.6.2018 <thvis01< th=""> 100 20</thvis01<>	6	246	$C_{17}H_{10}O_{2}^{+}$	19.6.2018	vis10	100	20	800				2f	
8 229 C17H90* 20.6.2018 vis02 100 20 100 P 100 and 50% 9 229 C17H90* 19.6.2018 vis12 50 20 800 2h 2h 1 229 C17H90* 19.6.2018 vis13 25 20 100 466.3 4 28 2 29 C17H90* 19.6.2018 vis13 25 20 100 466.3 4 28 2 29 C17H90* 19.6.2018 vis14 50 20 100 466.9 5 50 3 229 C17H90* 19.6.2018 vis14 50 20 100 474.3 3 93 4 229 C17H90* 19.6.2018 vis01 100 20 800 438.0 20 23 6 101 C16H9* 19.6.2018 vis02 100 20 800 470.0 b 20	7	229	$C_{17}H_9O^+$	20.6.2018	vis01	100	20	100					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	229	$C_{17}H_9O^+$	20.6.2018	vis02	100	20	100					P 100 and 50%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	229	$C_{17}H_9O^+$	19.6.2018	vis12	50	20	800				2h	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	229	$C_{17}H_9O^+$	19.6.2018	vis13	25	20	100	466.3	4	28		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	229	$C_{17}H_9O^+$	19.6.2018	vis13	25	20	100	474.5	3	54	2h	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	229	C ₁₇ H ₉ O ⁺	19.6.2018	vis14	50	20	100	466.9	5	50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	229	C ₁₇ H ₉ O ⁺	19.6.2018	vis14	50	20	100	474.3	3	93		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	229	$C_{17}H_9O^+$	19.6.2018	vis15	50	20	100				2h	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	201	$C_{16}H_{9}^{+}$	19.6.2018	vis01	100	20	800	438.0	20	23		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	101	$C_{16}H_{9}^{++}$	19.6.2018	vis05	100	20	800	462.0	40	35		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	100	C ₁₆ H ₈ ⁺⁺	19.6.2018	vis02	100	20	800					
9 99.5 C16H7++ 19.6.2018 vis04 100 20 800 450.0 b 20 Anthracene Ir m/z Ion Date File PO / % RF / % Dt / ms n / nm Dn / / nm Att fig Note 0 178 C14H10+ 13.6.2018 vis01 100 20 840	18	100	C ₁₆ H ₈ ⁺⁺	19.6.2018	vis03	100	20	800	470.0	b	20		
Anthracene Im Date File PO / % RF / % Dt / ms n / nm Dn / nm att fig Note 0 178 C ₁₄ H ₁₀ + 13.6.2018 vis01 100 20 840	19	99.5	C ₁₆ H ₇ ++	19.6.2018	vis04	100	20	800	450.0	b	20		
Ir m/z Ion Date File PO / % RF / % Dt / ms n / nm Dn / / nm att / % fig Note 0 178 C ₁₄ H ₁₀ + 13.6.2018 vis01 100 20 840 - - - - 1 178 C ₁₄ H ₁₀ + 13.6.2018 vis02 100 20 840 - - - - 2 178 C ₁₄ H ₁₀ + 13.6.2018 vis02 100 20 840 - - - - - 2 178 C ₁₄ H ₁₀ + 14.6.2018 vis17 100 20 800 - - 2a 3 178 C ₁₄ H ₁₀ + 14.6.2018 vis18 100 20 100 - 2a 4 176 C ₁₄ H ₈ + 14.6.2018 vis08 100 20 100 - 2d no line, att=0.8±13% 5 152 C ₁₂ H ₈ + 14.6.2018 vis09 100 20 800 554.0 100 2d no line att=-2±6.7%<		Anth	iracene										•
Ir m/z Ion Date File PO / % RF / % Dt / ms n / nm Dn / mm att / % fig / % Note 0 178 $C_{14}H_{10}^+$ 13.6.2018 vis01 100 20 840													
ms nm / nm / m / mm / mm <th< th=""><th>Nr</th><th>m/z</th><th>lon</th><th>Date</th><th>File</th><th>PO / %</th><th>RF / %</th><th>Dt /</th><th>n /</th><th>Dn</th><th>att</th><th>fig</th><th>Note</th></th<>	Nr	m/z	lon	Date	File	PO / %	RF / %	Dt /	n /	Dn	att	fig	Note
0 178 $C_{14}H_{10}^+$ 13.6.2018 vis01 100 20 840 1 1 178 $C_{14}H_{10}^+$ 13.6.2018 vis02 100 20 840 1 1 2 178 $C_{14}H_{10}^+$ 14.6.2018 vis17 100 20 800 2a 3 178 $C_{14}H_{10}^+$ 14.6.2018 vis17 100 20 800 2a 4 176 $C_{14}H_8^+$ 14.6.2018 vis10 100 20 800 2c 580 - 640nm att 60% 5 152 $C_{12}H_8^+$ 14.6.2018 vis08 100 20 100 2d no line, att=0.8±13% 6 152 $C_{12}H_8^+$ 14.6.2018 vis09 100 20 100 25 2d 7 151 $C_{12}H_7^+$ 14.6.2018 vis06 100 20 100 no line att=-2±6.7% 8 150 $C_{12}H_7^+$ 14.6.2018 vis06 100 20 100 no line att=-2±6.7%								ms	nm	/ 	/%		
1 178 $C_{14}H_{10}^+$ $13.6.2018$ vis02 100 20 840 a a 2 178 $C_{14}H_{10}^+$ $14.6.2018$ vis17 100 20 800 $2a$ 3 178 $C_{14}H_{10}^+$ $14.6.2018$ vis17 100 20 800 $2a$ 4 176 $C_{14}H_8^+$ $14.6.2018$ vis10 100 20 800 $2c$ $580 - 640nm$ att 60% 5 152 $C_{12}H_8^+$ $14.6.2018$ vis08 100 20 800 $2d$ no no $ne, att=0.8\pm 13\%$ 6 152 $C_{12}H_8^+$ $14.6.2018$ vis09 100 20 800 554.0 100 25 $2d$ 7 151 $C_{12}H_7^+$ $14.6.2018$ vis06 100 20 100 no no no no 8 150 $C_{12}H_7^+$ $14.6.2018$ vis06 100 20 100 no no no	20	178	$C_{14}H_{10}^+$	13.6.2018	vis01	100	20	840					
2 178 $C_{14}H_{10}^+$ 14.6.2018 vis17 100 20 800 2a 3 178 $C_{14}H_{10}^+$ 14.6.2018 vis18 100 20 100 2a 4 176 $C_{14}H_8^+$ 14.6.2018 vis10 100 20 800 2c 580 - 640nm att 60% 5 152 $C_{12}H_8^+$ 14.6.2018 vis08 100 20 100 2d no line, att=0.8±13% 6 152 $C_{12}H_8^+$ 14.6.2018 vis09 100 20 800 554.0 100 25 2d 7 151 $C_{12}H_7^+$ 14.6.2018 vis06 100 20 100 no line att=-2±6.7% 8 150 $C_{14}H_7^+$ 14.6.2018 vis07 100 20 100 no line att=-2±6.7%	21	178	C ₁₄ H ₁₀ ⁺	13.6.2018	vis02	100	20	840					
3 178 $C_{14}H_{10^+}$ $14.6.2018$ vis18 100 20 100 $2a$ 4 176 $C_{14}H_{8^+}$ $14.6.2018$ vis10 100 20 800 $2c$ $580 - 640nm att 60\%$ 5 152 $C_{12}H_{8^+}$ $14.6.2018$ vis08 100 20 100 $2d$ no line, att= $0.8\pm13\%$ 6 152 $C_{12}H_{8^+}$ $14.6.2018$ vis09 100 20 800 554.0 100 25 $2d$ 7 151 $C_{12}H_7^+$ $14.6.2018$ vis06 100 20 100 no line att= $-2\pm6.7\%$ 8 150 $C_{-1}H_7^+$ $14.6.2018$ vis07 100 20 100 a a	22	178	$C_{14}H_{10}^+$	14.6.2018	vis17	100	20	800				2a	
4 176 $C_{14}H_8^+$ 14.6.2018 vis10 100 20 800 2c 580 - 640nm att 60% 5 152 $C_{12}H_8^+$ 14.6.2018 vis08 100 20 100 2d no line, att=0.8±13% 6 152 $C_{12}H_8^+$ 14.6.2018 vis09 100 20 800 554.0 100 25 2d 7 151 $C_{12}H_7^+$ 14.6.2018 vis06 100 20 100 no line att=-2±6.7% 8 150 C H ± 14.6.2018 vis07 100 20 100 no line att=-2±6.7%	23	178	C ₁₄ H ₁₀ ⁺	14.6.2018	vis18	100	20	100				2a	
5 152 $C_{12}H_8^+$ 14.6.2018 vis08 100 20 100 2d no line, att=0.8±13% 6 152 $C_{12}H_8^+$ 14.6.2018 vis09 100 20 800 554.0 100 25 2d 7 151 $C_{12}H_7^+$ 14.6.2018 vis06 100 20 100 no line att=-2±6.7% 8 150 $C_{-1}H_7^+$ 14.6.2018 vis07 100 20 100 no line att=-2±6.7%	24	176	C ₁₄ H ₈ +	14.6.2018	vis10	100	20	800				2c	580 - 640nm att 60%
6 152 $C_{12}H_8^+$ 14.6.2018 vis09 100 20 800 554.0 100 25 2d 7 151 $C_{12}H_7^+$ 14.6.2018 vis06 100 20 100 no line att=-2±6.7% 8 150 C H ± 14.6.2018 vis07 100 20 100 no line att=-2±6.7%	25	152	C ₁₂ H ₈ +	14.6.2018	vis08	100	20	100				2d	no line, att=0.8±13%
7 151 $C_{12}H_7^+$ 14.6.2018 vis06 100 20 100 no line att=-2±6.7% 8 150 6 H ± 14.6.2018 vis07 100 20 100 no line att=-2±6.7%	26	152	C ₁₂ H ₈ +	14.6.2018	vis09	100	20	800	554.0	100	25	2d	
8 150 C H + 14.6 2018 yie07 100 20 100 yie07 0.0 20 100	27	151	C ₁₂ H ₇ +	14.6.2018	vis06	100	20	100					no line att=-2±6.7%
\circ 130 $C_{12}\Pi_{6}^{-}$ 14.0.2010 VIS07 100 20 100 100 100 100 IIIP, $att=-0.3\pm8\%$	28	150	C ₁₂ H ₆ +	14.6.2018	vis07	100	20	100					no line, att=-0.3±8%
9 101 C ₈ H ₅ ⁺ 14.6.2018 vis14 100 20 800 no line, att=-5±31%	29	101	$C_8H_5^+$	14.6.2018	vis14	100	20	800					no line, att=-5±31%
	21 22 23 24 25 26 27 28	178 178 178 176 152 152 151	$\begin{array}{c} C_{14}H_{10}^{+} \\ \hline C_{14}H_{10}^{+} \\ \hline C_{14}H_{10}^{+} \\ \hline C_{14}H_{8}^{+} \\ \hline C_{12}H_{8}^{+} \\ \hline C_{12}H_{8}^{+} \\ \hline C_{12}H_{7}^{+} \\ \hline C_{12}H_{7}^{+} \\ \hline \end{array}$	13.6.2018 14.6.2018 14.6.2018 14.6.2018 14.6.2018 14.6.2018 14.6.2018	vis02 vis17 vis18 vis10 vis08 vis09 vis06 vis07	100 100 100 100 100 100 100	20 20 20 20 20 20 20 20 20	 840 800 100 800 100 800 100 100 100 	554.0	100	25	2a 2a 2c 2d 2d	580 - 640nm at no line, att=0.8 no line att=-2±
	L	1	1		1	1	1	1		1	L		

Table S1. List of helium tagging vis-PD spectra measured for ions generated from differentaromatic hydrocarbon precursors.

30	100	$C_8H_4^+$	14.6.2018	-	-	-	-					no He complexes
31	99	C ₈ H ₃ +	14.6.2018	-	-	-	-					no He complexes
32	98	C ₈ H ₂ ⁺	14.6.2018	-	-	-	-					no He complexes
33	89	$C_{14}H_{10}^{++}$	13.6.2018	vis03	100	20	840				2b	
34	89	$C_{14}H_{10}^{++}$	14.6.2018	vis01	100	20	840				3	
35	89	$C_{14}H_{10}^{++}$	14.6.2018	vis02	50	20	840				2b,3	
36	89	$C_{14}H_{10}^{++}$	14.6.2018	vis03	20	20	840				3	
37	89	$C_{14}H_{10}^{++}$	14.6.2018	vis04	14	10	840				3	$\sigma = 5.5 \times 10^{-16} \text{ cm}^2$
38	89	$C_{14}H_{10}^{++}$	14.6.2018	vis05	100	20	100				2b	
39	89	$C_{14}H_{10}^{++}$	14.6.2018	vis11	100	20	100				2b	
40	89	$C_{14}H_{10}^{++}$	14.6.2018	vis16	100	20	100					
41	76	C ₁₂ H ₈ ++	14.6.2018	vis13	100	20	800	550.0	200	9		
42	63	C ₁₀ H ₆ ⁺⁺	14.6.2018	vis15	100	20	800				2e	no line, att=0.4±19%
В	enzo[g	hi]perylene		•					•	•		
Nr	m/z	lon	Date	File	PO / %	RF / %	Dt /	n /	Dn	att	fig	Note
							ms	nm	/ 	/%		
43	276	C ₂₂ H ₁₂ +	20.6.2018	vis03	100	20	800	465.0	33	50		
44	276	C ₂₂ H ₁₂ +	20.6.2018	vis03	100	20	800	498.0	27	87		
45	276	$C_{22}H_{12}^+$	20.6.2018	vis03	100	20	800	550.0	97	23		
46	276	$C_{22}H_{12}^+$	20.6.2018	vis03	100	20	800	653.0	68	50		
47	248	$C_{20}H_{8}^{+}$	21.6.2018	vis12	100	20	800	440.3	18	64		
48	222	C ₁₈ H ₆ ⁺	21.6.2018	vis10	100	20	800					440 - 580nm att 40%
49	221	C ₁₈ H ₅ +	21.6.2018	vis11	100	20	800					430 - 570 nm att 35%
50	138	$C_{22}H_{12}^{++}$	21.6.2018	vis01	100	20	800					
51	138	$C_{22}H_{12}^{++}$	21.6.2018	vis02	100	20	100	508.0	29	26		
52	138	$C_{22}H_{12}^{++}$	21.6.2018	vis02	100	20	100	548.0	35	62		
53	138	$C_{22}H_{12}^{++}$	20.6.2018	vis04	100	20	800					
54	138	C ₂₂ H ₁₂ ⁺⁺	20.6.2018	vis05	100	20	100					
55	137	$C_{22}H_{10}^{++}$	21.6.2018	vis03	100	20	100	436.6	20	31		
56	137	$C_{22}H_{10}^{++}$	20.6.2018	vis06	100	20	800					
57	136	C ₂₂ H ₈ ⁺⁺	21.6.2018	vis04	100	20	800					
58	136	C ₂₂ H ₈ ⁺⁺	21.6.2018	vis05	100	20	100					att < 20%
59	125	$C_{20}H_{10}^{++}$	21.6.2018	vis06	100	20	800	442.0	24	80		
60	125	$C_{20}H_{10}^{++}$	21.6.2018	vis06	100	20	100	442.8	21	24		
61	124	C ₂₀ H ₈ ⁺⁺	21.6.2018	vis07	100	20	800	442.3	24	50		
62	124	$C_{20}H_8^{++}$	21.6.2018	vis08	100	20	100					att < 20%
63	123	$C_{20}H_{6}^{++}$	21.6.2018	vis09	100	20	800	453.0	41	43		
C	ibenzo	[7]helicene	•				-			-	-	

Nr	m/z	lon	Date	File	PO / %	RF / %	Dt /	n /	Dn	att	fig	Note
							ms	nm	/	/%		
									nm			
64	479	$C_{38}H_{22}^+$	22.6.2018	vis01	100	20	800	450.0		20		
65	479	$C_{38}H_{22}^+$	22.6.2018	vis01	100	20	800	550.0		70		
66	401	$C_{32}H_{16}^{+}$	22.6.2018	vis03	100	20	800				2i	
67	401	$C_{32}H_{16}^+$	22.6.2018	vis04	100	20	100	497.0	32	54	2i	
68	401	$C_{32}H_{16}^{+}$	22.6.2018	vis04	100	20	100	651.0	40	27		
69	387	$C_{31}H_{15}^+$	22.6.2018	vis05	100	20	800					430 - 650 nm att
												75%
70	387	$C_{31}H_{15}^{+}$	22.6.2018	vis06	100	20	100					
71	237	$C_{38}H_{18}^{++}$	22.6.2018	vis08	100	20	800					
72	237	C ₃₈ H ₁₈ ⁺⁺	22.6.2018	vis09	100	20	100					broadband att 40%
73	200	$C_{32}H_{16}^{++}$	22.6.2018	vis07	100	20	800					
74	200	$C_{32}H_{16}^{++}$	22.6.2018	vis07	100	20	100	560.0	60	30		broadband att

Figure S6. UV absorption of the anthracene dication. The spectrum features a very broad (~10 nm) absorption band around 285 nm. The cross section is below $0.1 \text{ }^{\text{\AA}2}$.

Table S2. Comparison of the vibronic spectrum of anthracene dication with DIBs.

DIB data			C ₁₄ H ₁₀ ²⁺	Difference/Å			
DIB number	l _c / Å	FWHM /Å	exp/Å	exp/Å fwhm exp/Å			
40	5170.49	0.47	5160.11	9.8	10.38		
49	5262.48	0.54	5262.20	6.3	0.28		
63	5433.50	0.45	5442.56	7.7	-9.06		
87	5556.44	1.28	5556.26	11.3	0.18		
98	5669.33	1.47	5674.80	2.54	-5.47		

Position of bands in helium tagging IRPD spectra of anthracene dication and monocation

Table S3. Peak positions in helium tagging IRPD spectrum of anthracene dication. The centers, heights and FWHM values were determined from fitting the measured IRPD spectra with Gaussian functions (see Figure S8).

Nr	Center	Height	Area	FWHM
1	1172.73	0.25	1.00	3.8
2	1183.63	0.70	4.81	6.4
3	1199.70	0.35	2.54	6.7
4	1211.11	1.02	11.12	10.3
5	1269.63	0.13	1.60	11.8
6	1290.07	0.47	2.94	5.8
7	1299.51	0.58	3.48	5.7
8	1320.25	0.09	0.88	8.8
9	1329.95	0.29	1.10	3.6
10	1351.59	0.85	5.89	6.5
11	1356.73	0.54	1.70	2.9
12	1363.44	0.95	5.00	4.9
13	1372.73	0.83	5.29	6.0
14	1381.35	0.27	5.44	18.7
15	1422.48	0.14	3.43	22.8
16	1433.25	0.82	4.44	5.1
17	1445.92	0.99	7.15	6.8
18	1454.81	0.29	1.06	3.4
19	1482.21	1.01	11.62	10.9
20	1516.55	0.33	2.86	8.0
21	1566.11	0.99	19.50	18.5
22	1581.45	0.48	2.50	4.9
23	1588.62	0.37	2.14	5.4

Table S4. Peak positions in helium tagging IRPD spectrum of anthracene monocation. The centers, heights and FWHM values were determined from fitting the IRPD spectrum with Lorentzian functions.

Nr	Center	Height	Area	FWHM
26	1159.25	0.25	1.33	4.9
27	1188.95	0.98	7.63	7.3
28	1205.04	0.46	3.59	7.4
29	1221.41	0.22	1.32	5.7
30	1276.63	0.28	2.36	7.8
31	1289.68	0.62	3.23	4.9
32	1295.69	0.37	0.86	2.2
33	1315.23	0.93	4.49	4.6
34	1339.23	1.00	9.07	8.5
35	1350.97	0.97	7.17	6.9
36	1363.40	0.77	3.77	4.6
37	1401.25	0.72	3.23	4.2
38	1407.86	0.77	4.14	5.0
39	1417.26	0.97	10.77	10.4
40	1428.47	0.58	4.78	7.8
41	1447.69	0.49	1.12	2.2
42	1459.38	0.61	6.34	9.7
43	1541.59	0.80	3.63	4.2
44	1551.59	0.39	1.46	3.6
45	1564.41	0.22	1.02	4.4
46	1587.54	0.88	4.56	4.9

Figure S7. Helium tagging infrared photodissociation spectra of $C_{14}H_{10}^{2+}$ (upper panel) and $C_{14}H_{10}^{+}$ (lower panel) generated by electron ionization from anthracene. The experimental data (points) were fitted with Gaussian peaks. The characteristics of the fits are summarized in Tables S3 and S4.

Results of DFT calculations

State (symmetry)		Excitation energy	Excitation energy	Oscilator strength ^a	
		[eV]	[nm]		
S_1	Singlet-A'	1.4464	857.22	f=0.0000	
S_2	Singlet-A'	2.4558	504.87	f=0.1999	
S ₃	Singlet-A'	3.4283	361.65	f=0.0734	
S 4	Singlet-A'	3.6674	338.07	f=0.0000	
S 5	Singlet-A"	3.7153	333.71	f=0.0000	
S ₆	Singlet-A"	3.7879	327.31	f=0.0000	
S ₇	Singlet-A'	4.0739	304.34	f=0.0000	
S_8	Singlet-A"	4.1568	298.27	f=0.0000	
S 9	Singlet-A'	4.6307	267.74	f=1.4569	
S ₁₀	Singlet-A"	4.6409	267.16	f=0.0004	

 Table S5. TD-DFT (B3LYP/6-311G+(2d,p)) results for singlet state excitations.

^a Definition of oscilator strength:

$$f_i = \frac{8\pi^2 \tilde{v}_i m_e c}{3he^2} D_i$$

where f_i is the (dimensionless) oscillator strength corresponding to the electronic excitation of interest, and D_i is the corresponding dipole strength in esu² cm²; \tilde{v} is the corresponding excitation energy in wavenumbers. The remaining two constants are the charge on the electron: e = 4.803204×10⁻¹⁰ esu and the electron mass: m_e = 9.10938×10⁻³¹ kg.

Anharmonic theoretical IR spectra

Figure S8. Helium tagging infrared photodissociation spectra of $C_{14}H_{10}^{2+}$ (upper panel) and $C_{14}H_{10}^{+}$ (lower panel) generated by electron ionization from anthracene. The black spectra are 5-point smoothed original data (grey). The red stick spectra correspond to the B3LYP/6-311+G(2d,p) calculated anharmonic vibrational spectra for the corresponding optimized ions.

Table S6. Optimized geometries and energetics of anthracene dication in the S_0 , T_1 , S_2 and S_3 states and anthracene monocation. Method B3LYP/6-311G+(2d,p), the S_2 state was optimized using TD DFT approach.

Ion, State, energetics, FC simulation	Optimiz	ed ge	ometry			
	Ce	enter	Atomic	Atomic	Coord	dinates
$C_{14}H_{10}^{2+}$: S ₀				(Angstroms)		
	Num	ber	Number	Туре	Х	Y Z
(<i>E</i> _{rel} = 0.00 eV)						
	1	6	0	-0.013176	0.000000	0.026256
Charge = 2 Multiplicity = 1	2	6	0	0.008215	0.000000	1.426808
	3	6	0	1.236432	0.000000	2.122175
Low frequencies0.0003 0.0003	4	6	0	2.432709	0.000000	1.426038
0.0004 2.8318 3.7989 6.4231	5	6	0	2.434956	0.000000	0.014645
Low frequencies 79.5717 117.3439	6	1	0	-0.922272	0.000000	1.984084
198.9757	7	1	0	1.235547	0.000000	3.205681
	8	1	0	3.375174	0.000000	1.960591
Zero-point correction=	9	1	0	3.379183	0.000000	-0.519019
0.193544 (Hartree/Particle)	10	6	0	-1.227650	0.000000	-0.691497
Thermal correction to Energy=	11	6	0	-1.251652	0.000000	-2.102000
0.203308	12	6	0	-0.010641	0.000000	-2.824171
Thermal correction to Enthalpy=	13	6	0	1.203837	0.000000	-2.106419
0.204252	14	6	0	1.227840	0.000000	-0.695917
Thermal correction to Gibbs Free Energy=	15	1	0	-2.166419	0.000000	-0.145209
0.158367	16	6	0	-2.458771	0.000000	-2.812562
Sum of electronic and zero-point Energies=	17	1	0	2.142604	0.000000	-2.652709
-538.791583	18	6	0	-2.456527	0.000000	-4.223954
Sum of electronic and thermal Energies=	19	1	0	-3.402995	0.000000	-2.278895
-538.781820	20	1	0	-3.398990	0.000000	-4.758507
Sum of electronic and thermal Enthalpies=	21	6	0	-1.260250	0.000000	-4.920093
-538.780876	22	6	0	-0.032032	0.000000	-4.224727
Sum of electronic and thermal Free	23	1	0	-1.259367	0.000000	-6.003598
Energies= -538.826761	24	1	0	0.898455	0.000000	-4.782000
$C_{14}H_{10}^{2+}$: T ₁						
Charge = 2 Multiplicity = 3	Ce	enter	Atomic	Atomic	Coord	dinates
				(Angstroms)		
(<i>E</i> _{rel} = 0.91 eV)	Num	ber	Number	. Jon / Type	Х	Y Z
Low frequencies5.2739 -3.8162 -	1	6	0	-0.004945	0.000000	0.007087
2.2506 -0.0004 -0.0002 0.0003	2	6	0	0.013125	0.000000	1.453152
Low frequencies 81.6851 104.3193	3	6	0	1.201788	0.000000	2.138345
203.7275	4	6	0	2.421149	0.000000	1.426645
	5	6	0	2.443578	0.000000	0.013408
Zero-point correction=	6	1	0	-0.930486	0.000000	1.986941
0 190551 (Hartree/Particle)	7	-	0	1,212238	0 000000	3,221335

Thermal correction to Energy=	8	1	0	3.360343	0.000000	1.968786
0.200842	9	1	0	3.397631	0.000000	-0.501805
Thermal correction to Enthalpy=	10	6	0	-1.214825	0.000000	-0.698949
0.201787	11	6	0	-1.230927	0.000000	-2.099677
Thermal correction to Gibbs Free Energy=	12	6	0	0.019346	0.000000	-2.832869
0.153860	13	6	0	1,232894	0.000000	-2.123342
Sum of electronic and zero-point Energies=	14	6	0	1 250218	0.000000	-0 717701
-538 758173	15	1	0	-2 152160	0.000000	-0 153/88
Sum of electronic and thermal Energies=	16	6	0	-2 479252	0.000000	-2 829823
	17	1	0	2.479292	0.000000	-2 668887
Sum of electronic and thermal Enthalnies-	18	6	0	-2 /8771/	0.000000	-4 201806
	10	1	0	-2.407714	0.000000	-4.201800
Sum of electronic and thermal Erec	20	1	0	2 121125	0.000000	-2.273141
Sull of electronic and thermal free	20	1 6	0	-3.424155	0.000000	-4.743949
-558.794605	21	6	0	-1.200508	0.000000	-4.910557
	22	0	0	-0.020710	0.000000	-4.231020
	23	T	0	-1.2/3850	0.000000	-5.994748
	24	⊥ 	0	0.892581	0.000000	-4.800558
C ₁₄ H ₁₀ ²⁺ : S ₂						
Charge = 2 Multiplicity = 1	Ce	nter	Atomic	Atomic	Coord	linates
				(Angstroms)		
(<i>E</i> _{rel} = 2.35 eV)	Num	ber	Number	Tvpe	х	Y Z
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
#B3LYP/6-311+G(2d,p) TD(NStates=1,	1	6	0	-0.715442	1.232205	0.000000
Root=2) opt freq	2	6	0	-1.402046	2.476935	0.000000
	3	6	0	-0.695835	3.692524	0.000000
Low frequencies6.3768 -3.0319 -	4	6	0	0.695835	3.692524	0.000000
2.1604 -0.0008 -0.0008 -0.0005	5	6	0	1.402046	2.476935	0.000000
Low frequencies 82.0603 104.6265	6	1	0	-2.486983	2.486679	0.000000
206.9561	7	1	0	-1.243799	4.627079	0.000000
	8	1	0	1.243799	4.627080	0.000000
Zero-point correction=	9	1	0	2.486983	2.486679	0.000000
0.190926 (Hartree/Particle)	10	6	0	-1.407390	0.000000	0.000000
Thermal correction to Energy=	11	6	0	-0.715442	-1.232205	0.000000
0 201091	12	6	0	0 715442	-1 232205	0,000000
Thermal correction to Enthalpy=	13	6	0	1 407390	0.000000	0,000000
0 202035	14	6	0	0 715442	1 232205	0.000000
Thermal correction to Gibbs Free Energy=	15	1	0	-2 492391	0.000000	0.000000
0 155/35	16	6	0	-1 /020/6	-2 //76935	0.000000
Sum of electronic and zero-point Energies-				1. + (/2 (/+ ()	<u></u>	0.000000
Juill of electronic and zero-point chergies-	17	1	0	2 /02201	0,00000	0 000000
	17	1	0	2.492391	0.000000	0.000000
-538.705363	17 18 10	1 6 1	0	2.492391 -0.695835	0.000000 -3.692524	0.000000 0.000000
-538.705363 Sum of electronic and thermal Energies=	17 18 19	1 6 1	0 0 0	2.492391 -0.695835 -2.486983	0.000000 -3.692524 -2.486679	0.000000 0.000000 0.000000
-538.705363 Sum of electronic and thermal Energies= -538.695198	10 17 18 19 20	1 6 1 1	0 0 0 0	2.492391 -0.695835 -2.486983 -1.243799	0.000000 -3.692524 -2.486679 -4.627079	0.000000 0.000000 0.000000 0.000000
-538.705363 Sum of electronic and thermal Energies= -538.695198 Sum of electronic and thermal Enthalpies=	10 17 18 19 20 21	1 6 1 1 6	0 0 0 0 0	2.492391 -0.695835 -2.486983 -1.243799 0.695835	0.000000 -3.692524 -2.486679 -4.627079 -3.692524	0.000000 0.000000 0.000000 0.000000 0.000000
-538.705363 Sum of electronic and thermal Energies= -538.695198 Sum of electronic and thermal Enthalpies= -538.694253 Sum of electronic and thermal Enthalpies=	10 17 18 19 20 21 22	1 6 1 6 6	0 0 0 0 0 0	2.492391 -0.695835 -2.486983 -1.243799 0.695835 1.402046	0.000000 -3.692524 -2.486679 -4.627079 -3.692524 -2.476935	0.000000 0.000000 0.000000 0.000000 0.000000
-538.705363 Sum of electronic and thermal Energies= -538.695198 Sum of electronic and thermal Enthalpies= -538.694253 Sum of electronic and thermal Free	10 17 18 19 20 21 22 23 24	1 6 1 6 6 1	0 0 0 0 0 0 0	2.492391 -0.695835 -2.486983 -1.243799 0.695835 1.402046 1.243799 2.486082	0.000000 -3.692524 -2.486679 -4.627079 -3.692524 -2.476935 -4.627079	0.000000 0.000000 0.000000 0.000000 0.000000

Vibronic calculations: Energy = 0.0000 cm^-1: 0> -> 0> -> Intensity = 0.2896E+08 (DipStr = 2.337) Energy = 388.0088 cm^-1: 0> -> 8^1> -> Intensity = 0.8144E+07 (DipStr = 0.6430) Energy = 776.0175 cm^-1: 0> -> 8^2> -> Intensity = 0.1100E+07 (DipStr = 0.8501E-01)						
Energy = 1256.7186 cm^-1: 0> -> 42^1> -> Intensity = 0.7387E+06 (DipStr = 0.5564E-01)						
Energy = 1404.5440 cm^-1: 0> -> 46^1> -> Intensity = 0.3186E+07 (DipStr = 0.2381)						
Energy = 1792.5527 cm^-1: 0> -> 46^1;8^1>						
-> Intensity = 0.8564E+06 (DipStr = 0.6273E-01)						
C ₁₄ H ₁₀ ²⁺ : S ₃	Ce	nter	Atomic	Atomic	Coord	dinates
Charge = 2 Multiplicity = 1	Num	ber	(Number	(Angstroms) Type) X	Y Z
(<i>E</i> _{rel} = 3.03 eV)		 6			0.00000	0.00000
Low frequencies3.6835 -3.6507 -	2	6	0	0.000000	0.000000	1.414923
1.9672 -0.0006 0.0001 0.0003	3	6	0	1.167229	0.000000	2.158415
Low frequencies 23.5264 105.7827	4	6	0	2.409592	0.072357	1.507893
144.9559	5	6	0	2.461324	0.091739	0.126584
	6	1	0	-0.960899	0.069310	1.924298
Zero-point correction=	7	1	0	1.126125	-0.037210	3.241265
0.185266 (Hartree/Particle)	8	1	0	3.323729	0.088019	2.090616
Thermal correction to Energy=	9	1	0	3.425923	0.037867	-0.376605
	10	6	0	-1.143686	0.040078	-0.805274
Inermal correction to Enthalpy=	11	6	0	-1.156396	0.027892	-2.204470
0.196700 Thermal correction to Cibbs Free Energy	12	6	0	0.135831	0.130180	-2.883272
0 148452	15	6	0	1.270040	0.077002	-2.074529
Sum of electronic and zero-point Energies=	14	1	0	-2 100104	0.102234	-0.301395
-538.680326	16	6	0	-2.320379	0.055900	-3.008483
Sum of electronic and thermal Energies=	17	1	0	2.227539	-0.136192	-2.575951
-538.669837	10	c	0	2 260/21	0 002704	4 201150
	18	0	0	-2.200451	0.002/94	-4.391159
Sum of electronic and thermal Enthalpies=	18 19	1	0	-3.284929	0.125257	-4.391159 -2.506075

Sum of electronic and thermal Free	21	6	0	-1.026293	0.155257	-5.042054
Energies= -538.717140	22	6	0	0.139669	0.147818	-4.299330
	23	1	0	-0.985799	0.192018	-6.124858
Vibronic calculations:	24	1	0	1.101399	0.094134	-4.807979
Energy = 0.0000 cm^-1: 0> -> 0>						
-> Intensity = 12.87 (DipStr = 0.1508E-						
04)						
	Ce	enter	Atomic	Atomic	Coord	linates
$C_{14}H_{10}^+$: D ₀			((Angstroms)		
	Num	ber	Number	Туре	Х	Y Z
(<i>E</i> _{rel} = -11.71 eV)						
	1	6	0	-0.014787	0.000000	0.023792
Charge = 1 Multiplicity = 2	2	6	0	0.013443	0.000000	1.433706
	3	6	0	1.221353	0.000000	2.113019
Low frequencies0.0007 -0.0005 -	4	6	0	2.432193	0.000000	1.408404
0.0004 2.6439 3.6320 5.4001	5	6	0	2.438361	0.000000	0.022593
Low frequencies 85.0196 118.9532	6	1	0	-0.920008	0.000000	1.983919
218.2596	7	1	0	1.229921	0.000000	3.195614
	8	1	0	3.369197	0.000000	1.950723
Zero-point correction=	9	1	0	3.377913	0.000000	-0.517136
0.193669 (Hartree/Particle)	10	6	0	-1.223201	0.000000	-0.694081
Thermal correction to Energy=	11	6	0	-1.250306	0.000000	-2.099382
0.203240	12	6	0	-0.009028	0.000000	-2.821708
Thermal correction to Enthalpy=	13	6	0	1.199385	0.000000	-2.103837
0.204184	14	6	0	1.226492	0.000000	-0.698534
Thermal correction to Gibbs Free Energy=	15	1	0	-2.160765	0.000000	-0.148490
0.158068	16	6	0	-2.462177	0.000000	-2.820509
Sum of electronic and zero-point Energies=	17	1	0	2.136951	0.000000	-2.649424
-539.222021	18	6	0	-2.456009	0.000000	-4.206320
Sum of electronic and thermal Energies=	19	1	0	-3.401728	0.000000	-2.280780
-539.212450	20	1	0	-3.393013	0.000000	-4.748639
Sum of electronic and thermal Enthalpies=	21	6	0	-1.245169	0.000000	-4.910936
-539.211506	22	6	0	-0.037259	0.000000	-4.231625
Sum of electronic and thermal Free	23	1	0	-1.253739	0.000000	-5.993532
Energies= -539.257622	24	1	0	0.896192	0.000000	-4.781836