Supplementary information to

Model Potential Study of Non-Valence Correlation-Bound Anions of

(C₆₀)_n Clusters: the Role of Electric Field-Induced Charge Transfer

Tae Hoon Choi and Kenneth D. Jordan*

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United

States

E-mail: jordan@pitt.edu

1. The extended Mayer-Åstrand model allowing for intermolecular charge transfer

For a molecular dimer such as $(C_{60})_2$, the constrained charge-flow equation in the Mayer-Åstrand model, which does not permit intermolecular charge transfer, is

$$f = E_{tot} + \lambda_1 \left(\sum_{i=1}^{N_1} q_{1,i} - Q_{1,tot} \right) + \lambda_2 \left(\sum_{i=1}^{N_2} q_{2,i} - Q_{2,tot} \right)$$
(S1)

where λ_1 and λ_2 are Lagrange multipliers and $Q_{1,tot}$ and $Q_{2,tot}$ are the total charges of the isolated molecules 1 and 2, respectively. The total polarization energy, E_{tot} is given by eqn (2) in the manuscript. In extending the model to allow for intermolecular charge transfer we use the expression:

$$f = E_{tot} + \lambda_1 \left(\sum_{i=1}^{N_1} q_{1,i} - Q_{1,tot} \right) + \lambda_2 \left(\sum_{i=1}^{N_2} q_{2,i} - Q_{2,tot} \right) + \eta (\lambda_1 - \lambda_2)^2$$
(S2)

where η is represented by exponential depending on the internuclear separation as described below. By applying $df/q_1 = 0$, $df/q_2 = 0$, $df/p_1 = 0$, $df/p_2 = 0$, $df/d\lambda_1 = 0$, and $df/d\lambda_2 = 0$, the following set of

equations is obtained:

$$\begin{pmatrix} \mathbf{T}_{11}^{\mathbf{q}\mathbf{q}} & \mathbf{T}_{12}^{\mathbf{q}\mathbf{q}} & -\mathbf{T}_{11}^{\mathbf{p}\mathbf{q}} & -\mathbf{T}_{21}^{\mathbf{p}\mathbf{q}} & 1 & 0 \\ \mathbf{T}_{21}^{\mathbf{q}\mathbf{q}} & \mathbf{T}_{22}^{\mathbf{q}\mathbf{q}} & -\mathbf{T}_{12}^{\mathbf{p}\mathbf{q}} & -\mathbf{T}_{22}^{\mathbf{p}\mathbf{q}} & 0 & 1 \\ -\mathbf{T}_{11}^{\mathbf{p}\mathbf{q}} & -\mathbf{T}_{12}^{\mathbf{p}\mathbf{q}} & -\mathbf{T}_{12}^{\mathbf{p}\mathbf{p}} & -\mathbf{T}_{12}^{\mathbf{p}\mathbf{p}} & 0 & 0 \\ -\mathbf{T}_{21}^{\mathbf{p}\mathbf{q}} & -\mathbf{T}_{22}^{\mathbf{p}\mathbf{q}} & -\mathbf{T}_{21}^{\mathbf{p}\mathbf{p}} & -\mathbf{T}_{22}^{\mathbf{p}\mathbf{p}} & 0 & 0 \\ 1 & 0 & 0 & 0 & 2\eta & -2\eta \\ 0 & 1 & 0 & 0 & -2\eta & 2\eta \end{pmatrix} \begin{pmatrix} \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} -\mathbf{V}_1 \\ -\mathbf{V}_2 \\ \mathbf{E}_1 \\ \mathbf{E}_2 \\ Q_{1,tot} \\ Q_{2,tot} \end{pmatrix}$$
(S3)

where $\mathbf{T}^{\mathbf{qq}}$, $\mathbf{T}^{\mathbf{pq}}$, and $\mathbf{T}^{\mathbf{pp}}$ are charge-charge, charge-dipole and dipole-dipole interaction matrices, respectively. The matrix on the left-hand side is of Eq. S3 referred to as the molecular tensor matrix. \mathbf{q}_j and \mathbf{p}_j are vectors that contain, respectively, the $q_{j,i}$ and the components of $p_{j,i}$, for molecule *j*. \mathbf{V}_j is a vector of length N_1 that contains the $V_{j,i}$, and \mathbf{E}_j is a vector of length $3N_j$ that contains the components of the external field \mathbf{E}_{ext} . The inverse of the molecular tensor matrix become the molecular polarizability matrix, $\boldsymbol{\alpha}^{mol}$, which has charge-charge, charge-dipole, dipole-dipole components:

$$\boldsymbol{\alpha}^{mol} = \begin{pmatrix} \boldsymbol{\alpha}_{qq}^{mol} & \boldsymbol{\alpha}_{qp}^{mol} & \cdots \\ \boldsymbol{\alpha}_{pq}^{mol} & \boldsymbol{\alpha}_{pp}^{mol} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$
(S4)

The molecular polarizability tensor, α is computed as

$$\boldsymbol{\alpha} = \sum_{j=1}^{N} \sum_{i=1}^{N} \left(\alpha_{q_i q_j}^{mol} \mathbf{R}_j \otimes \mathbf{R}_i - 2 \boldsymbol{\alpha}_{q_i \mathbf{p}_j}^{mol} \otimes \mathbf{R}_i + \boldsymbol{\alpha}_{\mathbf{p}_i \mathbf{p}_j}^{mol} \right)$$
(S5)

where *N* is the total number of atoms and \mathbf{R}_i is the vector defining atomic site *i*. The first, second, and third terms on the right-hand of eqn (S5) indicate charge flow, charge-dipole coupling, and induced dipole contributions to the molecular polarizability, respectively.

2. Charge transfer parameter and applying the extended Mayer-Åstrand model to the $(C_{60})_n$ cluster

The quantity 2η is represented by exponential $Ae^{-B\cdot R}$, where A and B are determined by fitting the distance dependence of the intermolecular charge transfer of the C₆₀ dimer from B3LYP calculations resulting from an external field of 0.001 a.u. in the *z* direction. Fig. 2 in the manuscript shows that the extended Mayer-Åstrand model closely reproduces the charge transfer from the B3LYP calculations over a wide range of *R* values. The charge transfer model described above is readily extended to clusters with more than two fullerene molecules.

Fig. S1 shows the molecular tensor matrices for $(C_{60})_3$.

(b) Triangular C₆₀ trimer

Fig. S1 Molecular tensor matrices with η terms that damp the intermolecular charge transfer for linear and triangular C₆₀ trimers.