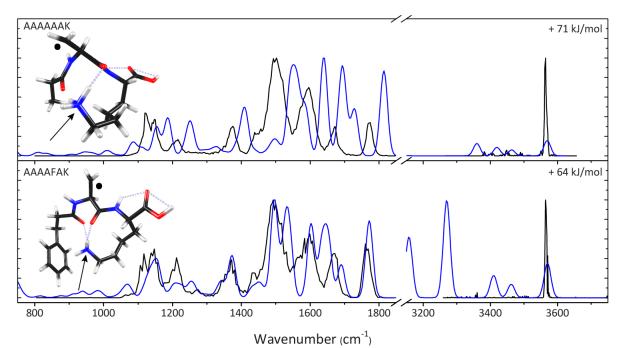
Investigation of the position of the radical in z₃-ions resulting from electron transfer dissociation using Infrared Ion Spectroscopy

Lisanne J.M. Kempkes,¹ Jonathan Martens,¹ Giel Berden,¹ Kas J. Houthuijs,¹ Jos Oomens^{1,2,*}

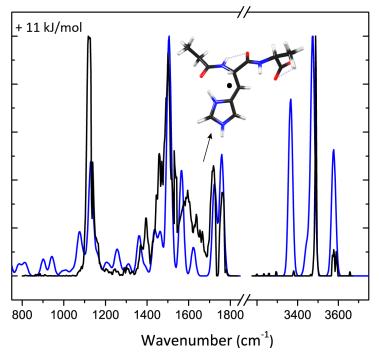
¹Radboud University, FELIX laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands

²Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands

Supplementary Information


The additional figures show the comparison between the experimental spectra of the z_3 -ions of $[AAAAAAK+2H]^{2+}$ and $[AAAAFAK+2H]^{2+}$ (Figure S1) and of $[KAHA+2H]^{2+}$ (Figure S2) with calculated spectra where the radical is positioned at the C_β-atom of the second residue counted from the C-terminus. This is an alanine residue in Figure S1 and a histidine residue in Figure S2. Table S1 lists the calculated relative Gibbs energies for all presented z-ion structures at three different levels of theory (B3LYP, B3LYPD and M06-2X).

Supplementary Information Table S1. Overview of relative energies of the z-ions with radicals positioned at the $C_{\alpha\nu}$ C_{β} and C_{ν} positions of the first, second and third residue (counted from the C-terminus). The energies are computed at the B3LYP, MP2, B3LYPD and M06-2X levels of theory.


B3LYP	3 rd residue			2 nd residue		1 st residue
Peptide fragment	Cα	C _β	Cγ	Cα	C _β	Cα
AAAA	+ 21	+ 63	-	0	+ 71	+1*
AAAA	+ 32	+ 3	+ 102	0	+ 64	+8*
ΑΑΑΑ ΗΑΚ	+ 22	+ 17	+ 153	+ 8	+ 68*	0*
AAAA WAK	+ 31	+2	-	0	+ 72*	+56*
ΑΑΑΑ ΥΑΚ	+ 33	0	+ 111	+ 15	+ 77*	+7*
K AHA	+ 15	+ 66*	-	0*	+ 11*	+ 17*

B3LYP-D	3 rd residue			2 nd residue		1 st residue
Peptide:	Cα	C _β	Cγ	Cα	C _β	Cα
ΑΑΑΑ ΑΑΚ	+17	+58	-	+3	+ 63	0*
AAAA FAK	+ 32	+2	+ 105	0	+ 63	+14*
AAAA HAK	+ 16	+ 8	+ 147	+ 6	+ 63*	0*
AAAA WAK	+ 26	0	-	0	+ 63*	+51*
ΑΑΑΑ ΥΑΚ	+ 36	0	+ 108	+ 19	+ 74*	+12*
K AHA	+ 13	+ 62		0	+ 10*	+ 17*

M06-2X	3 rd residue			2 nd residue		1 st residue
Peptide:	Cα	C _β	Cγ	Cα	C _β	Cα
AAAA AAK	+ 13	+ 51		+ 8	+ 56	+0*
AAAA FAK	+ 32	+5	+95	0	+ 58	+16*
AAAA HAK	+15	+12	+142	+8	+ 63*	0*
AAAA <mark> </mark> WAK	+ 28	+ 9		0	+ 63*	+50*
ΑΑΑΑ ΥΑΚ	+ 33	0	+ 93	+ 21	+ 68*	+10*
K AHA	+ 12	+ 61		0	+ 14*	+ 17*

Supporting Information Figure S1. Experimental spectra of the z_3 -ions from [AAAAAAK+2H]²⁺ and [AAAAHAK]²⁺(black) compared with calculated spectra (blue) for structures with the radical at the C_{β} position of the second residue (Ala). These structures are relatively high in energy due to the absence of resonance stabilization of the radical.

Supporting Information Figure S2. The calculated spectrum (blue) for radical migration to the C_6 position of the second residue (histidine) compared with the experimental spectrum (black) of the z_3 -ion from [KAHA+2H]²⁺.