Electronic Supporting Information (ESI)

Effect of alkali ions on optical properties of flavins: Vibronic spectra of cryogenic M⁺lumiflavin complexes (M=Li-Cs)

David Müller,^a Pablo Nieto,^a Mitsuhiko Miyazaki,^{a,b} Otto Dopfer^{a,c}*

a) Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.

b) Laboratory for Chemistry and Life Science, Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Japan.

c) Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Japan.

* corresponding author: dopfer@physik.tu-berlin.de; Fax: +49 30 314 23018

Figure S1. Photodissociation mass spectra of Na⁺LF with laser off and on (resonant to S_1 origin at 18310 cm⁻¹). The photodissociation efficiency is around 2%.

Figure S2. Comparison between measured VISPD spectra of M^+LF with M=(Li-Cs) and Franck-Condon (FC) simulations for the three most stable isomers shown in Figure 1 as a function of S₁ internal energy. Clearly, the FC simulations of the O4+ isomer fits best, in particular when comparing the main (i.e., intense) transitions.

Figure S3. Laser-off mass spectra of trapping mass-selected Na⁺LF ions measured at trap temperatures of 13 K (black) and 6 K (red). At T=6 K, He-tagged complexes of the type Na⁺LF-He are observed (2% of Na⁺LF). At T=13 K, no such complexes are formed in the cryogenic 22-pole trap.

Figure S4. VISPD spectra of Na⁺LF after mass-selection, trapping, and cooling at trap temperatures of T=13 K (black, no He adducts formed) and at T=6 K (red, He adducts formed). The spectra are very similar indicating that the contribution of the He adducts to the VISPD spectrum at 6 K is negligible.

Figure S5. (Top) Absolute distances (in pm) of M^*LF (M=Na-Cs) and LF in its S₀ state calculated at the PBE0/cc-pVDZ level. (Bottom) Relative changes in bond distances upon electronic S₁ excitation. Positive (negative) values indicate elongations (contractions).

5

Figure S6. Dependence of the S_1 origin intensities of M^+LF with M=Li-Cs on the laser pulse energy compared to a fit to a polynom with degree n=1 (linear, M=Na-Cs) and n=1-3 (linear, quadratic, cubic; M=Li). While for M=Na-Cs, the linear fit reproduces the experimental data points well, for Li clearly a quadratic (blue) to cubic (pink) function fits much better.

Table S1. Experimental frequencies for vibronic transitions (in cm⁻¹) observed in the VISPD spectra of the S₁ states of M⁺LF (M=Li-Cs) compared to harmonic frequencies of the M⁺LF(O4+) isomers computed at the PBE0/cc-pVDZ level, along with the mode assignment. The normal modes σ , β , and m1 etc. are similar to those of M⁺LC(O4+) discussed in Nieto et al. PCCP **20**, 22148 (2018). The m4* mode is special to the LF chromophore and corresponds to the in-plane bend of the CH₃ group at N10.

	v (exp)	v (calc)	Assignment
	17645	18022	00
A	163	167	m1
В	281	284	m2
С	292	297	m3
D	311	318	m4
E	326	334	2m1
F	368	375	β
G	410	419	m5
Н	440	447	m6
I	446	451	m1+m2
J	456	464	m1+m3
К	477	485	m1+m4
L	490	501	3m1
		501	m7
M	503	515	m8
N	533	542	β+m1

Li⁺LF

	v (exp)	v (calc)	Assignment
	18310	18784	00
A	128	134	β
В	187	194	m1
С	234	240	σ
D	256	268	2β
E	279	295	m2
F	286	298	m3
G	313	328	m1+β
Н	338	343	m4
I	355	361	m4*
J	363	374	σ+β
К	371	388	2m1
L	382	402	3β
М	407	429	m2+β
N	414	432	m3+β
0	426	434	m1+σ
		433	m6
Р	439	462	m1+2β
Q	447	455	m5
R	465	489	m1+m2
S	473	492	m1+m3
Т	497	498	m7

Na⁺LF

	v (exp)	v (calc)	Assignment
	18778	19279	00
A	82	86	β
В	157	162	σ
С	164	172	2β
D	194	202	m1
E	236	248	σ+β
F	247	258	3β
G	278	288	m1+β
Н	286	287	m2
1	302	295	m3
J	311	324	2σ
К	318	334	σ+2β
L	335	332	m4
М	350	364	m1+σ
N	360	360	m4*
0	371	373	m2+β
Р	378	381	m3+β
Q	386	404	2m1
R	401	420	3β+σ
6	415	418	m4+β
5	415	421	m6
Т	435	449	m2+σ
U	443	450	m5
		457	m3+σ

K⁺LF

	v (exp)	v (calc)	Assignment
	18914	19451	00
A	57	60	β
В	112	120	2β
C	124	130	σ
D	172	180	3β
E	179	190	β+σ
F	184	185	m1
G	240	245	m1+β
Н	249	260	2σ
I	285	285	m2
J	296	296	m3
К	303	315	m1+σ
L	308	320	2σ+β
М	335	330	m4
N	361	360	m4*
0	366	370	2m1
Р	402	415	m2+σ
Q	413	419	m6
R	422	426	m3+σ
e	457	460	m4+σ
5	458	450	m5
Т	468	470	m1+m2
U	480	481	m1+m3
V	489	495	m7

Rb⁺LF

	v (exp)	v (calc)	Assignment
	19031	19658	00
A	44	45	β
В	88	90	2β
С	108	111	σ
D	148	156	β+σ
E	175	179	m1
F	196	201	2β+σ
G	214	222	2σ
6	217	224	m1+β
Н	254	267	2σ+β
I	264	269	2β+m1
	276	283	m2
J	284	294	m3
	280	290	m1+σ
К	299	312	2β+2σ
L	311	314	3β+m1
М	320	328	m4
N	250	360	m4*
IN	550	358	2m1
0	387	401	2σ+m1
Р	401	416	m5
Q	410	449	m6
R	427	439	m4+σ
9	457	462	m1+m2
5		473	m1+m3
т	/03	505	2σ+m2
		516	2σ+m3

Cs⁺LF

Table S2. Low-energy intramolecular in-plane vibrational frequencies (in cm^{-1}) in the S₁ state of LF and M⁺LF(O4+) with M=Li-Cs calculated at the PBE0/cc-pVDZ level compared to experimental data.

	Li		Na		К		Rb		Cs		LF	
mode	S ₁	exp	S ₁	exp	S ₁	ехр	S ₁	exp	S ₁	ехр	S ₁	expª
m1	167	163	194	187	202	194	185	184	179	175	165	164
m2	284	281	295	279	287	286	285	285	283	276	276	274
m3	297	292	298	286	295	302	296	296	294	284	294	
m4	318	311	343	338	332	335	330	335	328	320	322	
m4*	352	?	361	355	360	360	360	361	360	350	358	
m5	419	410	455	447	450	443	450	458	416	401	409	403
m6	447	440	433	426	421	415	419	413	449	410	444	440
m7	501	490	498	497	495		495	489	494		489	
m8	515	503	532		529		528		527		521	513
m9	550		550		549		548		548		545	
m10	577		615		613		613		612		603	593

^a Values from He droplet spectrum (Vdovin et al., Chem. Phys. **422**, 195 (2013)).

Table S3. Harmonic vibrational frequencies (cm⁻¹) of LF and $M^+LF(O4+)$ with M=Li-Cs in the S₀ and S₁ states (Mulliken notation) calculated at the PBE0/cc-pVDZ level.

Li⁺LF

S₀	. '	S₁	c'
a	164.00	a 45.80	a 166.02
40.00	285.88	45.00	283.96
101 47	203.00	90.87	203.90
120.86	320.02	112.89	317.69
135.00	335.66	110 11	351.67
161 78	362.05	147 99	374 52
176.86	410.92	169.39	419.09
190.42	444 09	198 42	446.95
194 68	500.34	200.01	500.61
215.65	509.69	217.53	515.39
252.45	556.19	232.78	549.96
340.73	582.01	338.71	577.23
383.39	617.92	357.70	625.65
459.44	646.66	416.33	639.86
537.63	697.44	492.65	691.88
638.62	760.18	621.71	746.80
679.01	798.10	645.33	795.03
752.12	855.69	680.04	845.84
769.85	886.93	731.71	888.00
791.25	997.73	759.06	997.64
829.29	1013.00	776.78	1013.32
873.94	1027.44	876.62	1021.82
884.24	1036.67	885.79	1032.01
1027.15	1107.54	1012.24	1101.12
1052.28	1179.32	1043.14	1176.54
1132.73	1211.87	1128.75	1192.69
1438.96	1221.30	1432.09	1224.94
1454.57	1267.25	1450.63	1250.94
1476.59	1278.79	1467.44	1276.38
3134.01	1343.95	3118.36	1300.80
3138.19	1363.63	3131.67	1342.36
3175.52	1376.22	3172.87	1363.82
	1388.08		1376.96
	1396.39		1387.87
	1402.34		1393.48
	1423.40		1406.25
	1430.04		1414.00
	1452.02		1410.02
	1403.00		1441.30
	1495.90		1468 45
	1524 91		1488 39
	1548 71		1522 23
	1594 36		1531 60
	1630.44		1563.26
	1667.54		1610.16
	1709.16		1675.88
	1769.57		1716.74
	1870.70		1783.13
	3061.91		3051.13
	3063.68		3059.58
	3080.78		3080.45
	3173.74		3175.03
	3181.08		3179.01
	3204.75		3212.94
	3221.60		3230.14
	3252.45		3247.13
	3584.82		3614.12

Na⁺LF

S₀ a''	a'	S₁ a''	a'	
40.66	121 09	41 18	133.81	
62.83	180 67	54 05	194 08	
71.99	240.50	62.86	240.31	
101 53	296 25	99.92	294 68	
134 75	300.06	118.95	297 53	
146 50	346 49	121 54	343.05	
165.62	357 71	158 87	360 71	
175 42	425.82	176.81	432 95	
193 12	452 63	193.81	454 74	
211 54	505 12	217 30	497 95	
252.78	528.12	233.06	531.67	
339.89	553.90	338.13	550.14	
381.65	609.82	351.41	615.07	
458.18	644.18	415.97	637.05	
532.04	686.17	490.23	677.91	
638.58	761.41	621.77	746.62	
678.75	795.26	647.13	790.41	
750.87	850.00	680.85	838.44	
771.43	885.49	733.19	885.92	
788.95	999.32	757.77	998.37	
829.12	1019.14	773.94	1016.02	
873.03	1028.13	875.89	1022.83	
880.41	1035.85	877.21	1029.60	
1027.32	1106.43	1013.70	1101.79	
1052.76	1177.00	1043.50	1176.27	
1133.49	1216.41	1129.12	1190.05	
1439.70	1220.46	1433.77	1223.74	
1455.05	1267.68	1451.34	1248.19	
1477.76	1276.40	1467.35	1274.52	
3133.54	1340.31	3120.46	1297.74	
3137.06	1364.38	3129.47	1336.38	
3173.74	1378.51	3171.21	1364.61	
	1389.01		1379.03	
	1397.45		1391.31	
	1403.27		1393.56	
	1422.12		1404.36	
	1436.34		1411.85	
	1451.12		1421.91	
	1463.99		1439.38	
	1481.84		1453.24	
	1409.10		1400.30	
	1521.02		1400.17	
	1047.72		1502.76	
	1097.24		1550.07	
	1630.79		1003.33	
	1710.03		1667.46	
	1770.38		1720 31	
	1866 28		1771 41	
	3061 52		3052.51	
	3062.68		3058.09	
	3079.98		3079.95	
	3170.67		3173.37	
	3179.69		3176.37	
	3197.99		3206.71	
	3221.70		3232.83	
	3251.67		3246.74	
	3591.73		3619.24	

K⁺LF			
S₀ a''	a'	S₁ a''	a'
S ₀ a" 33.28 53.30 63.03 101.23 134.90 141.10 160.82 175.04 192.66 209.95 252.38 338.54 380.45 457.57 528.38 638.46 678.88 749.01 772.13 787.73 828.84 873.35 880.70 1027.55 1053.10 1133.95 1440.11 1455.35 1478.20 3132.97 3136.05 3172.53	a' 71.25 154.94 199.72 289.03 299.02 336.12 357.19 414.70 449.56 503.87 525.99 550.79 608.75 643.77 683.14 761.81 794.07 846.78 884.78 999.41 1020.75 1028.00 1035.53 1106.46 1175.68 1214.19 1221.46 1267.09 1275.12 1338.20 1363.92 1378.62 1389.26 1397.44 1402.91 1421.19 1436.36 1450.53 1464.07 1476.99 1487.38 1522.16 1547.34 1598.63 169.58 1710.69 1774.86 1669.58	S ₁ a" 35.14 48.52 52.51 94.57 112.43 124.24 157.08 173.93 194.07 216.74 234.14 336.64 346.57 414.32 485.85 620.38 645.42 678.68 732.54 757.28 772.29 874.19 875.49 1014.07 1043.35 1129.22 1434.04 1452.28 1467.47 3120.05 3128.28 3170.76	a' 86.20 161.94 201.59 287.33 294.64 332.25 359.95 421.37 450.45 495.40 528.73 548.86 613.03 637.05 674.90 746.07 788.22 834.97 884.78 998.54 1016.98 1022.83 1028.62 1101.36 1175.17 1187.02 1222.80 1244.86 1271.92 1296.11 1332.59 1364.15 1377.59 1391.08 1393.71 1402.47 1411.56 1421.95 1391.08 1393.71 1402.47 1411.56 1421.95 1438.02 1452.71 1468.05 1485.12 1498.49 1531.31 1561.82 1595.82 1663.38 1725.81 1766.56 3051.90 3057.42 3080.29 3172.57 3173.89
	1547.34 1598.63 1629.97 1669.58 1710.69 1774.86 1864.14 3061.00 3061.84 3079.43 3168.33 3178.54 3200.43 3221.63 3250.50		1498.49 1531.31 1561.82 1595.82 1663.38 1725.81 1766.56 3051.90 3057.42 3080.29 3172.57 3173.89 3208.25 3234.10 3247.29

Rb⁺LF

S₀		S₁	
a"	a'	a''	a'
27.69	48.35	29.52	59.59
49.43	124.38	45.31	129.78
62.77	183.28	51.22	184.94
101.25	286.87	93.20	285.01
134.94	298.76	111.07	296.24
139.16	333.44	122.99	329.65
159 40	357 14	155 39	360 12
175.00	412 17	171 14	418 75
192.60	448 92	190.75	449 73
209.84	503.67	216.80	494.86
252.42	525 34	233.67	527 77
338 /1	550 12	335.37	5/8 31
320.41	608 52	346.61	612 59
457.50	642.69	414.60	012.00
437.30	043.00	414.02	037.23
527.81	082.45	485.87	073.84
638.67	761.98	621.10	746.11
6/8.83	793.89	645.64	181.17
748.37	846.25	678.70	834.19
772.79	884.64	733.12	884.60
787.14	999.56	757.15	998.54
828.79	1021.35	771.33	1017.26
873.52	1028.36	873.27	1022.88
882.00	1035.55	874.37	1028.21
1027.69	1106.49	1014.62	1101.72
1053.22	1175.28	1043.54	1175.22
1134.15	1213.54	1129.31	1186.87
1440.29	1222.23	1434.71	1222.31
1455.50	1267.16	1451.73	1244.15
1478.39	1274.83	1467.33	1272.74
3132 74	1337 87	3121 10	1296 12
3135.65	1363 97	3127.38	1332 46
3172 10	1378 88	3169.31	1364 23
0112.10	1380 30	0100.01	1370 75
	1307.56		1301 /1
	1403 20		1303 56
	1403.20		1402.20
	1420.92		1402.39
	1430.53		1411.70
	1450.50		1422.38
	1464.22		1438.16
	14/4.86		1451.84
	1487.04		1468.18
	1522.68		1484.59
	1547.48		1496.58
	1599.66		1531.78
	1630.20		1562.26
	1670.35		1594.69
	1711.23		1662.68
	1778.38		1730.02
	1863.30		1764.05
	3060.77		3052.84
	3061.60		3056.68
	3079 21		3079.09
	3167 70		3171 84
	3178 20		3173.81
	3203.00		3208 67
	3203.00		3233 71
	3250 16		3233.14
	3230.10		3240.00
	3596.31	l	3022.13

Cs⁺LF

So		S ₁		
a''	a'	a''	a'	
24.53	36.18	26.45	45.23	
47.98	106.71	44.41	111.28	
63.24	177.42	51.55	178.82	
100.53	285.73	92.01	283.06	
135.61	296.81	110.42	294.32	
138.26	331.32	124.88	327.50	
159.04	357.34	155.59	359.86	
175.36	409.88	172.01	415.68	
194.52	448.72	193.16	449.16	
210.78	503.77	216.64	494.24	
251.98	525.09	234.41	527.09	
338.05	549.17	335.11	547.99	
3/9.00	643.61	340.09	637.22	
526.89	681.66	414.29	673 13	
638 44	761.00	620.10	745.89	
678 84	701.90	644 64	787 38	
748.08	845 29	678 14	833.49	
773.30	884 19	733.01	884 13	
787.03	999.95	757.30	998.65	
829.63	1021.47	771.70	1017.51	
874.58	1028.02	873.79	1022.56	
884.48	1035.97	874.56	1028.16	
1027.67	1106.28	1014.38	1101.42	
1052.86	1174.85	1043.30	1174.59	
1134.63	1212.36	1129.38	1185.38	
1440.37	1221.89	1434.45	1222.12	
1456.16	1265.86	1452.85	1243.50	
1478.52	1273.66	1467.51	1271.27	
3132.24	1338.00	3120.01	1295.11	
3134.66	1363.34	3127.08	1331.85	
3172.58	1379.19	3169.73	1364.31	
	1389.12		1377.80	
	1396.30		1390.94	
	1402.75		1393.79	
	1420.67		1402.13	
	1436.69		1411.96	
	1450.29		1421.98	
	1464.76		1437.64	
	1474.40		1452.03	
	1486.57		1468.08	
	1523.24		1484.62	
	1547.35		1490.70	
	1600.76		1532.39	
	1029./1		1001.01	
	1711 69		1092.47	
	1775 12		1725 70	
	1863.00		1763 29	
	3059 90		3051 90	
	3061 46		3056 62	
	3079 78		3079.83	
	3166.70		3171.88	
	3178.14		3173.18	
	3207.69		3211.63	
	3221.55		3234.35	
	3250.23		3246.61	
	3596.70		3623.06	
		•		

LF

S₀ a''	a'	S₁ a''	a'
44 12	164 63	-36.80	164 70
63.49	278 64	47.65	276.27
101 17	205.23	62 18	203.63
101.17	235.25	02.10	233.05
124.40	323.70	99.41	321.95
130.53	304.04	125.23	307.00
152.60	405.04	145.50	408.51
173.49	444.67	157.24	444.31
192.34	502.42	186.72	489.35
208.16	517.89	211.58	520.79
249.83	545.57	240.34	544.73
334.97	606.65	321.66	602.81
379.05	642.39	336.71	635.25
456.38	679.87	415.38	668.92
519.95	763.83	477.25	742.81
638.38	794.02	615.94	783.00
674.99	842.21	652.15	830.00
731.99	883.28	674.17	878.13
780.20	1000.62	738.58	999.58
788.18	1020.38	761.60	1014.18
836.46	1036.16	773.10	1018.56
866.02	1040.18	858.96	1026.85
925.25	1108.42	899.87	1096.28
1030.99	1176.49	1019.18	1174.61
1056.48	1204.99	1043.60	1189.12
1137.55	1235.73	1130.81	1202.07
1443.48	1267.87	1438.58	1243.78
1458.75	1273.70	1453.48	1265.39
1480.40	1337.58	1467.07	1289.83
3121.66	1363.66	3109.02	1337.17
3126.09	1383.05	3115.47	1360.96
3156.35	1390.32	3149.30	1381.40
	1397.39		1390.85
	1408.38		1394.29
	1414.97		1397.55
	1429.25		1416.21
	1439.09		1422.54
	1451.97		1428.25
	1466.90		1452.73
	1479.05		1464.10
	1527.08		1478.06
	1551.50		1486.67
	1617.39		1540.63
	1632.00		1554.83
	1678.15		1575.29
	1713.97		1651.06
	1836.54		1737.38
	1848.67		1809.22
	3052.84		3044.10
	3055.10		3048.55
	3069.11		3066.56
	3165.21		3157.68
	3166.04		3171.41
	3210.65		3223.92
	3224.44		3226.81
	3238.45		3233.27
	3619.17	I	3632.26

Table S4. Selected atomic charges (in e) of $M^+LF(O4+)$ and LF in the S₀ and S₁ states using natural bond orbital analysis (PBE0/cc-pVDZ).

	qм		Q N5		q O4		q 02		q N1	
	S ₀	S ₁	S ₀	S ₁	S ₀	S ₁	S ₀	S_1	S ₀	S ₁
Li	0.881	0.860	-0.519	-0.619	-0.738	-0.744	-0.536	-0.497	-0.632	-0.482
Na	0.922	0.908	-0.494	-0.595	-0.723	-0.733	-0.545	-0.505	-0.636	-0.481
Κ	0.922	0.909	-0.467	-0.569	-0.725	-0.736	-0.550	-0.509	-0.639	-0.481
Rb	0.928	0.915	-0.459	-0.561	-0.721	-0.732	-0.553	-0.511	-0.640	-0.482
Cs	0.917	0.906	-0.446	-0.550	-0.724	-0.736	-0.555	-0.513	-0.641	-0.483
LF			-0.376	-0.454	-0.577	-0.592	-0.598	-0.570	-0.660	-0.508

Table S5. Vertical transition energies (v in cm⁻¹, λ in nm) and oscillator strength (f) for the first four excited singlet states of M⁺LF(O2) with M=Li-Cs and M⁺LF(O2+) with M=Li-K calculated at the PBE0/cc-pVDZ level.^a

O2		S ₁ (ππ*)			S ₂ (nπ*)			S ₃ (nπ*/ππ*)			S₄ (nπ*/ππ*)	
	ν	λ	F	ν	λ	f	ν	λ	f	ν	λ	f
Li	25735	388.57	0.174	27090	369.14	0.001	29171	342.81	0.263	29344	340.79	0.000
Na	25746	388.41	0.193	27077	369.32	0.001	29267	341.68	0.000	29581	338.06	0.240
к	25698	389.14	0.204	27066	369.47	0.001	29202	342.44	0.000	29722	336.45	0.234
Rb	25674	389.50	0.210	27055	369.62	0.001	29162	342.91	0.000	29802	335.55	0.234
Cs	25650	389.87	0.216	27039	369.83	0.001	29129	343.30	0.000	29839	335.13	0.234

O2+	S ₁ (ππ*)			S ₂ (nπ*)			S ₃ (nπ*/ππ*)			S ₄ (nπ*/ππ*)		
	ν	λ	F	ν	λ	f	ν	λ	f	ν	λ	f
Li	26159	382.28	0.138	27728	360.64	0.001	29175	342.76	0.303	29916	334.27	0.000
Na	26191	381.81	0.165	27332	365.87	0.005	29443	339.64	0.235	29762	336.00	0.040
К	26063	383.69	0.191	27161	368.18	0.001	29413	339.99	0.000	29697	336.73	0.250

^a The character of the S_3/S_4 states depend on the metal. The optically bright $\pi\pi^*$ states have large f values, while the optically dark $n\pi^*$ states have f values close to 0.