Selecting and identifying gas-phase protonation isomers of nicotineH⁺ using combined laser, ion mobility and mass spectrometry techniques

Samuel J. P. Marlton,¹ Benjamin I. McKinnon,¹ Boris Ucur,¹ Alan T. Maccarone,¹ William A. Donald, ² Stephen J. Blanksby,³ Adam J. Trevitt.¹

 ^{1.} School of Chemistry, University of Wollongong, Wollongong, AUSTRALIA
^{2.}School of Chemistry, University of New South Wales, Sydney, AUSTRALIA
^{3.} Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, AUSTRALIA

SUPPORTING INFORMATION

Table S1: Relative energies of different conformers of PYRO-nicH⁺ relative to the PYRI-nicH⁺ (*S*, *trans, anti*) global minimum in kcal/mol as calculated with four different DFT levels of theory with the aug-cc-pVDZ basis set as well as the MP2 method with the cc-pVDZ basis set. Omitted values converged to another structure upon optimisation. Labels are according to the naming system implemented by Yoshida *et al.* [REF 34 in main text] and represents (pyrrolidine ring conformational region, relative placement of the methyl group to the pyridine ring, χ angle region).

PYRO	M06-2X	CAM-B3LYP	ωB97X-D	MP2
(N, cis, anti)	3.1	-	4.2	-
(W, cis, anti)	2.7	5.3	4.1	-
(W, cis, syn)	2.4	5.1	3.8	-
(W, trans, anti)	0.5	2.5	1.6	0.7
(W, trans, syn)	0.5	2.5	1.6	-

Table S2: Relative energies of different conformers of PYRI-nicH⁺ relative to the PYRI-nicH⁺ (*S*, *trans, anti*) global minimum in kcal/mol as calculated with four different DFT levels of theory with the aug-cc-pVDZ basis set as well as the MP2 method with the cc-pVDZ basis set. Omitted values converged to another structure upon optimisation. Labels are according to the naming system implemented by Yoshida *et al.* [REF 34 in main text] and represents (pyrrolidine ring conformational region, relative placement of the methyl group to the pyridine ring, χ angle region).

PYRI	M06-2X	CAM-B3LYP	ωB97X-D	MP2
(N, cis, anti)	6.0	6.0	5.7	-
(N, cis, syn)	5.6	5.9	5.4	-
(S, cis, anti)	5.4	-	5.3	-
(E, cis, anti)	5.1	6.3	5.2	-
(W, trans, syn)	1.1	1.0	1.1	-
(W, trans, anti)	0.2	-	-	-
(S, trans, anti)	0	0	0	0

Table S3: Experimental and Calculated vertical transition energies for the *(W, trans, anti)* isomer of PYRO-nicH⁺. TD-DFT calculations were performed with M06-2X and ωB97X-D with the aug-cc-pVDZ basis set.

PYRO	M06-2X		ωB97X-D		
PYRO	Transition	Calculated	Transition	Calculated	
Transition	Energies	Oscillator	Energies	Oscillator	
from S ₀ to:	(eV)	Strength (f)	(eV)	Strength (f)	
\mathbf{S}_{1}	4.67	0.0030	4.88	0.0034	
S_2	5.04	0	5.01	0.0001	
S_3	5.59	0.043	5.52	0.040	
S_4	6.23	0.079	6.15	0.062	
S_5	6.69	0.066	7.02	0.39	

Table S4: Experimental and Calculated vertical transition energies for the *(S, trans, anti)* isomer of PYRI-nicH⁺. TD-DFT calculations were done with M06-2X and ωB97X-D with the aug-cc-pVDZ basis set.

PYRI	M06-2X		ωB97X-D		
PYRI	Transition	Calculated	Transition	Calculated	
Transition	Energies	Oscillator	Energies	Oscillator	
from S ₀ to:	(eV)	Strength (f)	(eV)	Strength (f)	
\mathbf{S}_1	3.41	0.0018	3.30	0.0005	
S_2	4.40	0.0014	4.34	0.0012	
S_3	5.24	0.13	5.19	0.13	
S_4	5.79	0.0004	6.04	0.010	
S_5	6.10	0.016	6.13	0.0027	

Figure S1: Structure of (*S*)-(-)-Nicotine including degrees of freedom which differentiate the conformers.

Figure S2: Optimised structures for twelve conformers of nicH⁺ their relative energies in kcal/mol as calculated using M06-2X/aug-cc-pVDZ.

Figure S3: Power dependence experiments showing change in 266 nm photo-fragment signal with increasing laser power for all photoproduct ions.

Figure S4: Electronic excitation energies of the first four states of protonated PYRI-nicH+ (blue) and PYRO-nicH+ (green) as the pyrrolidine v_2 angle (A) or χ angle (B) was scanned. Transition energies were calculated using M06-2X/aug-cc-pVDZ. States of interest are plotted with bold lines. The -0.5 eV shift applied in the TD-DFT simulated electronic spectra was not applied to values presented in this table.

Dominant Precursor	PYRO-nicH ⁺			Both	PYR	I-nicH ⁺
Neutral Fragment(s)	NH ₂ CH ₃	$\begin{array}{c} \mathrm{NH_2CH_3}\\\mathrm{H_2} \end{array}$	NH ₂ CH ₃ H ₂ • CH ₃	HZ HZ		
Product Ion	×+	×+		+		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
m/z	132	130	117	106	84	80

Figure S5: Product ion assignments proposed by Williams *et al.* [REF 35 in main text] and assignment of the corresponding neutral fragment. The precursor ion assignment is based on experimental results presented here in the present study.

Figure S6: Calculated TD-DFT vertical transition energies for PYRI-nicH⁺ (blue) and PYRO-nicH⁺ (green). Three TD-DFT levels of theory were used (A) M06-2X, (B) CAM-B3LYP, (C) ωB97X-D, all with the aug-cc-pVDZ basis set. The transitions were fitted with Gaussian functions with a FWHM of 0.3 eV. Transitions have been offset -0.5 eV, as explained in the text. (D) Shows transitions calculated using CC2/cc-pVDZ from geometries which were optimised using MP2/cc-pVDZ. CC2 transitions have been offset by -0.35 eV as explained in the text.

Figure S7: Intensity photodissociation action plots showing the changing intensities of all nicH⁺ photodissociation fragments between 60 m/z and 150 m/z. ESI solvents (A) acetonitrile and (B) methanol were used. The difference between image (A) and (B) is plotted in (C).

Figure S8: Normalised action spectra of fragments of nicH⁺ after partial separation of the protomers of nicH⁺ by FAIMS at -11.5 V (A) and -16.5 V (B).