Supporting information for

Unraveling the complexity of complex mixtures by combining highresolution pharmacological, analytical and spectroscopic techniques: Antidiabetic constituents in Chinese medicinal plants

Yong Zhao,^a Kenneth Thermann Kongstad,^a Yueqiu Liu,^a Chenhua He,^{a,b} and Dan Staerk*,^a

^a Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
 ^b College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

*Corresponding author. Address: Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Tel.: +45 35336177; fax +45 35336001.

E-mail address: ds@sund.ku.dk (D. Staerk).

Table of Contents

Table S1. Plants tested for α -glucosidase, α -amylase and PTP1B inhibitory activity at a single concentration of 50 µg/mL.

Table S2. Identification of metabolites by HPLC-HRMS and NMR.

Figure S1. α-glucosidase (A) and PTP1B (B) inhibition curves of crude ethyl acetate extracts of

Persicaria bistorta (L.) Samp., Dioscorea bulbifera L., Boehmeria nivea (L.) Gaudich, and

Tinospora sagittata Gagnep.

Figure S2. UV and HRMS spectra of compound 8 obtained in the HPLC-HRMS mode.

Figure S3. ¹H-NMR spectrum of the mixture of compound 7 and 8.

Figure S4. ¹H-NMR spectrum of compound 7 and the mixture of compound 7 and 8.

Figure S5. HSQC spectrum of the mixture of compound 7 and 8.

Figure S6. HMBC spectrum of the mixture of compound 7 and 8.

Figure S7. COSY spectrum of the mixture of compound 7 and 8.

Figure S8. UV and HRMS spectra of compound 9 obtained in the HPLC-HRMS mode.

Figure S9. ¹H-NMR spectrum of compound 9.

Figure S10. HSQC spectrum of compound 9.

Figure S11. HMBC spectrum of compound 9.

Figure S12. COSY spectrum of compound 9.

Figure S13. UV and HRMS spectra of compound 10 obtained in the HPLC-HRMS mode.

Figure S14. ¹H-NMR spectrum of compound 10.

Figure S15. HSQC spectrum of compound 10.

Figure S16. HMBC spectrum of compound 10.

Figure S17. COSY spectrum of compound 10.

Figure S18. Triple high-resolution α -glucosidase/ α -amylase/PTP1B inhibition profiling of *P*. *bistorta*.

Figure S19. IC₅₀ curves of isolates and Acarbose (reference compound) in the α -glucosidase inhibition assays.

Figure S20. IC₅₀ curves of isolates and RK682 (reference compound) in the PTP1B inhibition assays.

Table S1. Plants tested for α -glucosidase, α -amylase and PTP1B inhibitory activity at a single concentration of 50 μ g/mL.

No.	Plant	Botanical	Part used	Voucher	% i	nhibition at 50	μ g/m L^a
		family		specimen _ #	AGH	AM	PTP1B
1	Rhus chinensis Mill.	Anacardiaceae	Root	zyc003	2.3	6.4	95.5
2	Oenanthe javanica (Bl.) DC.	Apiaceae	Seed	hch109	-2.5	5.8	78.0
3	Oenanthe javanica (Bl.) DC.	Apiaceae	Whole plant	zyc022	-1.6	4.5	92.9
4	Ligusticum striatum DC.	Apiaceae	Rhizome	hch114	33.2	8.4	42.9
5	Rauvolfia verticillata (Lour.) Baill.	Apocynaceae	Root	zyc054	20.6	6.3	28.9
6	Amorphophallus rivieri Durieu ex Riviere	Araceae	Tuber	zyc111	27.7	5.3	75.6
7	Pinellia ternata (Thunb.) Breit.	Araceae	Rhizome	zyc092	-2.1	3.6	88.1
8	Ophiopogon japonicus (Thunb.) Ker Gawl.	Asparagaceae	Tuber	hch104	-0.9	25.9	42.3
9	Anemarrhena asphodeloides Bunge.	Asparagaceae	Rhizome	hch111	51.5	8.7	82.8
10	Taraxacum mongolicum HandMazz.	Asteraceae	Whole plant	zyc203	4.2	6.8	52.7
11	Senecio scandens BuchHam.	Asteraceae	Whole plant	zyc182	17.4	8.2	86.0
12	Siegesbeckia orientalis L.	Asteraceae	Whole plant	zyc202	18.9	7.2	89.5
13	Bidens bipinnata L.	Asteraceae	Whole plant	zyc184	23.3	3.2	105.8
14	Bidens pilosa L.	Asteraceae	Whole plant	zyc184	28.0	17.1	102.5
15	Commelina communis L.	Commelinaceae	Whole plant	zyc235	8.2	3.3	91.6
16	Cornus officinalis Siebold & Zucc.	Cornaceae	Fruit	hch112	14.2	6.0	73.3
17	Sedum erythrostictum Miq.	Crassulaceae	Whole plant	zyc263	61.9	10.3	87.8
18	Trichosanthes kirilowii Maxim.	Cucurbitaceae	Root	hch107	2.7	2.6	24.9
19	Dioscorea oppositifolia L.	Dioscoreaceae	Rhizome	hch103	5.7	6.2	3.8
<mark>20</mark>	Dioscorea bulbifera L.	Dioscoreaceae	Rhizome	zyc040	<mark>94.3</mark>	16.8	<mark>78.2</mark>
21	Eucommia ulmoides Oliv.	Eucommiaceae	Bark	hch113	5.8	0.8	73.1
22	Phyllanthus urinaria L.	Euphorbiaceae	Whole plant	zyc268	37.3	5.2	105.1
23	Ocimum basilicum L.	Lamiaceae	Whole plant	zyc118	53.2	7.5	78.9
24	Prunella vulgaris L.	Lamiaceae	Whole plant	zyc125	53.0	2.4	102.1
<mark>25</mark>	Tinospora sagittata Gagnep.	Menispermaceae	Rhizome	zyc145	<mark>83.8</mark>	<mark>4.5</mark>	<mark>67.1</mark>
26	Melastoma dodecandrum Roxb.	Melastomataceae	Whole plant	zyc175	39.6	23.4	96.1
27	Cistanche deserticola Y.C.Ma	Orobanchaceae	Rhizome	hch102	-0.5	5.6	12.6
28	Zea mays L.	Poaceae	Stigmas and style	hch108	23.8	4.1	82.7
29	Lophatherum gracile Brongn.	Poaceae	Leaves	hch110	1.1	4.1	81.3
30	Reynoutria multiflora (Thunb.) Moldenke	Polygonaceae	Tuber	hch101	-2.9	5.5	23.5
31	Persicaria bistorta (L.) Samp.	Polygonaceae	Rhizome	zyc085	88.9	<mark>44.6</mark>	<mark>99.4</mark>

32	Portulaca oleracea L.	Portulacaceae	Whole plant	zyc225	10.8	5.7	95.7
33	Coptis chinensis Franch.	Ranunculaceae	Rhizome	hch106	20.4	1.7	-3.7
34	Semiaquilegia adoxoides (DC.) Makino	Ranunculaceae	Root	zyc126	39.1	-0.3	77.9
35	Potentilla kleiniana Wight & Arn.	Rosaceae	Whole plant	zyc243	6.2	11.2	49.9
36	Gardenia jasminoides Ellis	Rubiaceae	Fruit	zyc315	8.1	6.1	56.2
37	Paederia scandens (Lour.) Merr.	Rubiaceae	Whole plant	zyc309	60.1	4.2	95.0
38	Dimocarpus longan Lour.	Sapindaceae	Seed	zyc295	41.3	9.8	27.4
39	Scrophularia ningpoensis Hemsl.	Scrophulariaceae	Tuber	hch105	0.6	6.6	65.9
<mark>40</mark>	Boehmeria nivea (L.) Gaudich	Urticaceae	Root	zyc105	84.8	<mark>8.6</mark>	<mark>97.2</mark>

^{*a*} Values expressed as mean of three independent experiments.

Table S2. Identification metabolites with HRMS and NMR data.

Peak	Detected precursor ion $(m/z, positive)$	Molecular formula	Compound	NMR Data ^a
1	155.0347 [M+H] ⁺ (calcd for C ₇ H ₇ O ₄ ⁺ : 155.0339) ΔM -5.0 ppm	$C_7H_6O_4$	HO 2 ² 1 OH HO 3,4-Dihydroxybenzoic acid	¹ H NMR (methanol- <i>d</i> ₄ , 600 MHz, δ in ppm, <i>J</i> in Hz) δ: 7.43 (1H, d, <i>J</i> = 1.6 Hz, H-2'), 7.41 (1H, dd, <i>J</i> = 8.1, 1.6 Hz, H-6'), 6.79 (1H, d, <i>J</i> = 8.1 Hz, H-5')
2	291.0864 [M+H] ⁺ (calcd for C ₁₅ H ₁₅ O ₆ ⁺ : 291.0863) ΔM -0.3 ppm	C15H14O6	HO B Catechin HO Catechin	 ¹H NMR (methanol-<i>d</i>₄, 600 MHz, δ in ppm, <i>J</i> in Hz) δ: 6.84 (1H, d, <i>J</i> = 1.8 Hz, H-2'), 6.76 (1H, d, <i>J</i> = 8.2 Hz, H-5'), 6.72 (1H, dd, <i>J</i> = 8.2, 1.8 Hz, H-6'), 5.93 (1H, s, H-8), 5.86 (1H, s, H-6), 4.56 (1H, d, <i>J</i> = 7.4 Hz, H-2), 3.98 (1H, m, H-3), 2.85 (1H, dd, <i>J</i> = 16.0, 2.4 Hz, H-4b), 2.50 (1H, dd, <i>J</i> = 16.0, 8.6 Hz, H-4a).
3	241.0706 [M+H] ⁺ (calcd for C ₁₁ H ₁₃ O ₆ ⁺ : 241.0707) ΔM 0.3 ppm	C11H12O6	HO Eucomic acid	¹ H NMR (methanol- <i>d</i> ₄ , 600 MHz, δ in ppm, <i>J</i> in Hz) δ: 7.07 (1H, d, <i>J</i> = 8.3 Hz, H-2' and H-6'), 6.66 (1H, d, <i>J</i> = 8.3 Hz, H-3' and H-5'), 2.96 (1H, d, <i>J</i> = 13.5 Hz, H-4a), 2.84 (1H, d, <i>J</i> = 16.2 Hz, H-2b), 2.82 (1H, d, <i>J</i> = 13.5 Hz, H-4b), 2.58 (1H, d, <i>J</i> = 16.2 Hz, H-2a)
4	291.0872 [M+H] ⁺ (calcd for C ₁₅ H ₁₅ O ₆ ⁺ : 291.0863) ∆M -3.1 ppm	C15H14O6	HO B C HO B C HO C HO C HO HO HO HO HO HO C HO HO HO HO HO HO HO HO HO HO	¹ H NMR (methanol- d_4 , 600 MHz, δ in ppm, J in Hz) δ : 6.97 (1H, d, $J = 1.9$ Hz, H-2'), 6.80 (1H, dd, $J = 8.2, 1.9$ Hz, H-6'), 6.76 (1H, d, $J = 8.2$ Hz, H-5'), 5.94 (1H, d, $J = 2.2$ Hz, H-8), 5.91 (1H, d, $J = 2.2$ Hz, H-6), 4.69 (1H, m, H-3), 2.87 (1H, dd, $J = 16.8, 4.7$ Hz, H-4b), 2.73 (1H, dd, J = 16.8, 2.8 Hz, H-4a).

				¹ H NMR (acetone- d_6 , 600 MHz, δ in ppm, J in Hz) δ : 7.62
				(1H, s, H-16), 7.47 (1H, d, J = 1.5 Hz, H-15), 6.94 (1H, d,
				J = 1.5 Hz, H-14), 5.30 (1H, dd, J = 10.9, 5.5 Hz, H-12),
				4.84 (1H, m, H-2), 4.75 (1H, d, J = 5.9 Hz, H-6), 2.71
			0	$(1H, m, H-4), 2.50 (1H, m, H-3\beta), 1.99 (1H, m, H-3\alpha),$
			H 1 3 17	2.46 (1H, m, H-7 β), 2.26 (1H, m, H-7 α), 2.25 (1H, m, H-
	345 1318 [M+H]+(calcd for C10H21O6+			5), 2.06 (1H, m, H-11β), 1.98 (1H, m, H-11α), 2.01 (1H,
12	345.1333) AM 4.2 ppm	$C_{19}H_{20}O_{6}$	14 0 7 /H	m, H-1β), 1.77 (1H, m, H-1α), 1.90 (1H, m, H-10), 1.29
	5 1511555) zin 112 ppin			(3H, s, H-19).
			0	$^{13}\mathrm{C}$ NMR (acetone- $d_6,$ 150 MHz, δ in ppm) δ : 29.6 (C-1),
			Diosbulbin B	77.2 (C-2), 39.4 (C-3), 42.7 (C-4), 42.7 (C-5), 77.9 (C-6),
				37.8 (C-7), 90.2 (C-8), 45.9 (C-9), 39.4 (C-10), 42.8 (C-
				11), 75.6 (C-12), 126.9 (C-13), 111.0 (C-14), 143.3 (C-
				15), 141.3 (C-16), 175.7 (C-17), 177.3 (C-18), 16.6 (C-
				19).
				¹ H NMR (acetone- d_6 , 600 MHz, δ in ppm, J in Hz) δ : 9.37
			MeO	(1H, d, <i>J</i> = 9.2 Hz, H-5), 7.55 (1H, d, <i>J</i> = 8.8 Hz, H-9),
	241 0860 [M+U]+ (colod for CHO.+			7.51 (1H, d, <i>J</i> = 8.8 Hz, H-10), 7.23 (1H, d, <i>J</i> = 2.8 Hz, H-
13	241.0860 [M+H] ⁺ (caled for C ₁₅ H ₁₃ O ₃ ⁺ : 241.0859) ΔM -0.4 ppm	$C_{15}H_{12}O_3$		6), 7.14 (1H, dd, <i>J</i> = 9.2, 2.8 Hz, H-6), 6.90 (1H, d, <i>J</i> = 2.4
			HO	Hz, H-1), 6.82 (1H, d, <i>J</i> = 2.4 Hz, H-3), 4.09 (3H, s, 4-
			Flavanthrinin	OMe).

 $C_{30}H_{48}O_4$

473.3625) ΔM -1.3 ppm

24

Hederagenin

¹H NMR (DMSO- d_6 , 600 MHz, δ in ppm, J in Hz) δ : 5.15 (1H, s, H-12), 3.43 (1H, overlapped, H-3), 3.32 (1H, overlapped, H-23a), 3.07 (1H, d, J = 10.6 Hz, H-23b), 2.74 (1H, dd, J = 3.2, 13.7 Hz, H-18), 1.89 (1H, t, J = 12.6Hz, H-16 β), 1.80 (2H, m, H-11 α , H-11 β), 1.66 (1H, m, H-15 β), 1.61 (1H, m, H-22 β), 1.60 (1H, m, H-19 β), 1.50 (1H, overlapped, H-9), 1.48 (1H, m, H-16 α), 1.47 (1H, m, H-1 β), 1.46 (2H, m, H-2), 1.43 (1H, m, H-7 β), 1.42 (1H, m, H-22 α), 1.40 (1H, m, H-6 α), 1.31 (1H, m, H-21 α), 1.23 (1H, m, H-6 β), 1.16 (1H, m, H-7 α), 1.12 (1H, m, H-21 α), 1.04 (1H, m, H-19 α), 0.97 (1H, m, H-15 α), 1.10 (1H, m, H-5 α), 1.09 (3H, s, H-27), 0.87 (9H, s, H-25, H-29, H-30), 0.84 (1H, m, H-1 α), 0.71 (3H, s, H-26), 0.53 (3H, s, H-24).

¹³C NMR (DMSO-*d*₆, 150 MHz, δ in ppm) δ: 37.7 (C-1),
26.3 (C-2), 70.0 (C-3), 41.6 (C-4), 46.1 (C-5), 17.3 (C-6),
31.8 (C-7), 38.6 (C-8), 46.9 (C-9), 35.9 (C-10), 22.8 (C-11), 121.3 (C-12), 143.6 (C-13), 40.8 (C-14), 27.0 (C-15),
22.5 (C-16), 45.1 (C-17), 40.6 (C-18), 45.6 (C-19), 30.2 (C-20), 33.2 (C-21), 31.9 (C-22), 64.4 (C-23), 12.4 (C-24),
15.2 (C-25), 16.7 (C-26), 25.5 (C-27), 32.6 (C-29), 23.2 (C-30).

C30H48O4

473.3625) ΔM 2.6 ppm

25

Pomolic acid

¹H NMR (DMSO- d_6 , 600 MHz, δ in ppm, J in Hz) δ : 5.15 (1H, s, H-12), 3.00 (1H, m, H-3), 2.48 (1H, m, H-16β), 2.39 (1H, m, H-18),1.89 (1H, m, H-11β), 1.83 (1H, m, H-11α), 1.69 (1H, m, H-15α), 1.68 (1H, m, H-2β), 1.61 (1H, m, H-21α), 1.59 (1H, m, H-22β), 1.58 (1H, m, H-9), 1.52 (1H, m, H-1β), 1.50 (1H, m, H-22α), 1.49 (1H, m, H-1α), 1.46 (1H, m, H-6β), 1.45 (1H, m, H-7β), 1.38 (1H, m, H-16α), 1.31 (1H, m, H-6α), 1.28 (3H, s, H-27), 1.26 (1H, m, H-20), 1.22 (1H, m, H-7α), 1.12 (1H, m, H-21β), 1.07 (3H, s, H-29), 0.89 (3H, s, H-23), 0.85 (3H, s, H-25), 0.87 (1H, m, H-15β), 0.84 (3H, s, H-30), 0.70 (3H, s, H-26),0.68 (3H, s, H-24), 0.67 (1H, m, H-5). ¹³C NMR (DMSO-*d*₆, 150 MHz, δ in ppm) δ: 37.9 (C-1), 27.9 (C-2), 76.7 (C-3), 38.2 (C-4), 54.6 (C-5), 17.9 (C-6), 32.6 (C-7), 39.1 (C-8), 46.5 (C-9), 38.1 (C-10), 23.0 (C-11), 126.8 (C-12), 138.6 (C-13), 40.9 (C-14), 27.9 (C-15), 25.0 (C-16), 46.8 (C-17), 53.1 (C-18), 73.4 (C-19), 41.3 (C-20), 25.7 (C-21), 37.1 (C-22), 28.1 (C-23), 15.8 (C-24), 15.4 (C-25), 16.4 (C-26), 23.8 (C-27), 178.8 (C-28), 26.1 (C-29), 16.1 (C-30).

$\frac{28}{281.2475) \Delta M 3.9 \text{ ppm}} C_{18}H_{32}O_2 \qquad (4H, m, H-8 \text{ and } H-14), 1.62 (2H, p, J = 7.3 \text{ Hz}, H-3), 1.36-1.25 (14H, m, H-4, H-5, H-6, H-7, H-15, H-16 \text{ and} H-14) = 0.00 \text{ Hz}, H H_{32}O_2 = 0$	281.2464 [M+H] ⁺ (calcd for C ₁₈ H ₃₃ O ₂ ⁺ : 28 281.2475) ΔM 3.9 ppm	C ₁₈ H ₃₂ O ₂	Linolenic acid	¹ H NMR (chloroform- <i>d</i> , 600 MHz, δ in ppm, <i>J</i> in Hz) δ: 5.37-5.32 (4H, m, H-9, H-10, H-12, H-13), 2.76 (2H, t, <i>J</i> = 6.8 Hz, H-11), 2.33 (2H, t, <i>J</i> = 7.6 Hz, H-2), 2.03-2.06 (4H, m, H-8 and H-14), 1.62 (2H, p, <i>J</i> = 7.3 Hz, H-3), 1.36-1.25 (14H, m, H-4, H-5, H-6, H-7, H-15, H-16 and
--	--	--	----------------	--

^{*a*}¹³C NMR data were obtained from HSQC and/or HMBC spectra. ^{*b*} Quaternary carbon was not determinated.

Figure S1. α-Glucosidase (A) and PTP1B (B) inhibition curves of crude ethyl acetate extracts of Persicaria bistorta (L.) Samp., Dioscorea bulbifera

L., Boehmeria nivea (L.) Gaudich, and Tinospora sagittata Gagnep.

Figure S2. UV and HRMS spectra of compound 8 obtained in the HPLC-HRMS mode.

Figure S3. ¹H-NMR spectrum of the mixture of compound 7 and 8 (600 MHz, Methanol- d_4).

Figure S5. HSQC spectrum of the mixture of compound 7 and 8 (600 MHz, Methanol- d_4).

Figure S6. HMBC spectrum of the mixture of compound 7 and 8 (600 MHz, Methanol- d_4).

Figure S7. COSY spectrum of the mixture of compound 7 and 8 (600 MHz, Methanol- d_4).

Figure S8. UV and HRMS spectra of compound 9 obtained in the HPLC-HRMS mode.

Figure S9. ¹H-NMR spectrum of compound **9** (600 MHz, DMSO-*d*₆).

Figure S10. HSQC spectrum of compound 9 (600 MHz, DMSO-*d*₆).

Figure S11. HMBC spectrum of compound 9 (600 MHz, DMSO-*d*₆).

Figure S12. COSY spectrum of compound 9 (600 MHz, DMSO-*d*₆).

Figure S13. UV and HRMS spectra of compound 10 obtained in the HPLC-HRMS mode.

Figure S14. ¹H-NMR spectrum of compound 10 (600 MHz, Methanol-*d*₄).

Figure S15. HSQC spectrum of compound 10 (600 MHz, Methanol-*d*₄).

Figure S16. HMBC spectrum of compound 10 (600 MHz, Methanol-*d*₄).

Figure S18. HPLC chromatogram of crude *P. bistorta* ethyl acetate extract monitored at 254 nm (black) as well as high-resolution α -glucosidase inhibition profile (red), high-resolution PTP1B inhibition profile (green) and high-resolution α -amylase inhibition profile (blue) [40 mg/mL, 10 μ L injection].

Figure S19. IC₅₀ curves of isolated compounds and Acarbose (reference compound) in the α -glucosidase inhibition assays.

