SUPPLEMENTARY INFORMATION

THE FELION CRYOGENIC ION TRAP BEAM LINE AT THE FELIX FREE-ELECTRON LASER LABORATORY: INFRARED SIGNATURES OF PRIMARY ALCOHOL CATIONS

Pavol Jusko,^a Sandra Brünken,^{a,b} Oskar Asvany,^a Sven Thorwirth,^a Alexander Stoffels,^{a,b} Lex van der Meer,^b Giel Berden, ^b Britta Redlich,^b Jos Oomens,^b and Stephan Schlemmer^{*a}

January 14, 2019

^a I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany. Fax: +49 221470 5162; Tel: +49 221470 5737; E-mail: schlemmer@ph1.uni-koeln.de

^b Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.

Contents

1	Mol	lecular structures – vibrational wavenumbers	S-3
	1.1	Methanol radical cation CH_3OH^+ (1a)	S-3
		1.1.1 Structural parameters of CH_3OH^+	S-3
		1.1.2 Structural parameters of CH_3OH^+ -He	S-4
		1.1.3 CH_3OH^+ , B3LYP/aug-cc-pVTZ	S-4
		1.1.4 CH_3OH^+ , B3LYP/aug-cc-pVTZ-GD3BJ	S-4
		1.1.5 CH_3OH^+ -He, B3LYP/aug-cc-pVTZ	S-4
		1.1.6 CH_3OH^+ -He, B3LYP/aug-cc-pVTZ-GD3BJ	S-4
	1.2	Methyl oxonym cation $CH_2OH_2^+$ (1b)	S-5
		1.2.1 Structural parameters of $CH_2OH_2^+$	S-5
		1.2.2 Structural parameters of $CH_2OH_2^+$ -He \ldots	S-5
		1.2.3 $CH_2OH_2^+$, $CCSD(T)/ANO1$, Harmonic/Anharmonic	S-6
		1.2.4 $CH_2OH_2^+$, B3LYP/aug-cc-pVTZ	S-6
		1.2.5 $CH_2OH_2^+$, B3LYP/aug-cc-pVTZ-GD3BJ	S-6
		1.2.6 $CH_2OH_2^+$ -He, B3LYP/aug-cc-pVTZ	S-6
		1.2.7 $CH_2OH_2^+$ -He, B3LYP/aug-cc-pVTZ-GD3BJ	S-6
	1.3	Protonated methanol $CH_3OH_2^+$ (2)	S-7
		1.3.1 Structural parameters of $CH_3OH_2^+$	S-7
		1.3.2 Structural parameters of $CH_3OH_2^+$ -He \ldots	S-8
		1.3.3 $CH_3OH_2^+$, $CCSD(T)/ANO1$	S-8
		1.3.4 $CH_3OH_2^+$, B3LYP/aug-cc-pVTZ	S-8
		1.3.5 $CH_3OH_2^+$, B3LYP/aug-cc-pVTZ-GD3BJ	S-8
		1.3.6 $CH_3OH_2^+$ -He, B3LYP/aug-cc-pVTZ	S-9
		1.3.7 $CH_3OH_2^+$ -He, B3LYP/aug-cc-pVTZ-GD3BJ	S-9
	1.4	Ethanol radical cation $C_2H_5OH^+$ (3a)	S-10
		1.4.1 $C_2H_5OH^+$ (3a)	S-10
		1.4.2 $C_2H_5OH^+$ (3a), B3LYP/aug-cc-pVTZ	S-11
		1.4.3 $C_2H_5OH^+$ (3a), B3LYP/aug-cc-pV1Z-GD3BJ	S-11
		1.4.4 $C_2H_5OH^+$ (3a), B3LYP/aug-cc-pV1Z	S-12
		1.4.5 $C_2H_5OH^+$ (3a), B3LYP/aug-cc-pV1Z-GD3BJ	S-12
	1.5	Ethanol radical cation $C_2H_5OH^+$ (3b)	S-13
		1.5.1 $C_2H_5OH^+$ (3b)	S-13
		1.5.2 $C_2H_5OH^+$ – He (3b)	S-14
		1.5.3 $C_2H_5OH^+$ (3b), B3LYP/aug-cc-pV1Z	S-14
		1.5.4 $C_2H_5OH^+$ (3b), B3LYP/aug-cc-pV1Z-GD3BJ	S-14
		1.5.5 $C_2H_5OH^+$ – He (3b), B3LYP/aug-cc-pVTZ	S-14
	1.0	1.5.6 $C_2H_5OH^+$ – He (3b), B3LYP/aug-cc-pV1Z-GD3BJ	S-15
	1.6	Protonated ethanol $C_2H_5OH_2$ - gauche (4a)	S-16
		1.6.1 Structural parameters of $C_2H_5OH_2$ -gauche (4a)	S-10
		1.6.2 Structural parameters of $C_2H_5OH_2 - He(a)$ (4a)	5-17
		1.6.3 Structural parameters of $C_2H_5OH_2 - He(g)$ (4a')	S-18
		1.0.4 $\bigcup_2 \Pi_5 \bigcup \Pi_2 - gauche, B3LYP/aug-cc-pVTZ \dots \dots$	5-18
		1.0.5 $U_2H_5UH_2$ -gauche, B3LY P/aug-cc-pVTZ, GD3BJ	5-18
		1.0.0 $U_2H_5UH_2'$ -gauche-He(a) (4a), B3LYP/aug-cc-pVTZ	5-19
		1.0. $(U_2H_5UH_2 - gauche-He(a) (4a), B3LYP/aug-cc-pVTZ-GD3BJ$	5-19
		1.0.8 $U_2H_5UH_2'$ -gauche-He(g) (4a'), B3LYP/aug-cc-pVTZ	S-19
		1.0.9 $\cup_2 H_5 \cup H_2^-$ -gaucne-He(g) (4a'), B3LYP/aug-cc-pVTZ-GD/3BJ	5-19

	1.7	C_2H_5	DH_2^+ -anti (4b)	. S-20
		$1.\overline{7}.1$	Structural parameters of $C_2H_5OH_2^+$ -anti	. S-20
		1.7.2	Structural parameters of $C_2H_5OH_2^+$ -anti-He (4b)	. S-21
		1.7.3	$C_2H_5OH_2^+$ -anti, CCSD(T)/ANO1, Harmonic/Anharmonic	. S-21
		1.7.4	$C_2H_5OH_2^+$ -anti, B3LYP/aug-cc-pVTZ	. S-21
		1.7.5	$C_2H_5OH_2^+$ -anti, B3LYP/aug-cc-pVTZ-GD3BJ	. S-22
		1.7.6	$C_2H_5OH_2^+$ -anti-He (4b), B3LYP/aug-cc-pVTZ	. S-22
		1.7.7	$C_2H_5OH_2^+$ -anti-He (4b), B3LYP/aug-cc-pVTZ-GD3BJ	. S-22
2	Mol	ecular	structures	S-23
2	Mol 2.1	ecular Energe	structures etics	S-23 . S-23
2	Mol 2.1 2.2	ecular Energe Influer	structures etics	S-23 . S-23 . S-24
2	Mole 2.1 2.2 Com	ecular Energe Influer parise	structures etics	S-23 . S-23 . S-24 S-25
2 3 4	Mole 2.1 2.2 Com	ecular Energe Influer parise erime	structures etics	S-23 . S-23 . S-24 S-25 S-26

NOTE: All structural parameters are given in units of Å and degrees. Vibrational wavenumbers are given in units of cm^{-1} . Harmonic/anharmonic wavenumbers are separated by a slash. If only one value is given, this refers to harmonic values. Intensities (in parantheses, km/mol) are given following the same format for selected species/ levels of theory.

- 1 Molecular structures vibrational wavenumbers
- 1.1 Methanol radical cation CH_3OH^+ (1a)

Figure S1: Molecular structures of CH_3OH^+ and CH_3OH^+ -He (1a).

1.1.1 Structural parameters of CH_3OH^+

H C 1 r1 0 2 r2 1 a1 H 3 r3 2 a2 1 d0 H 2 r4 3 a3 4 d1 H 2 r4 3 a3 4 md1 B3LYP/aug-cc-pVTZ B3LYP/aug-cc-pVTZ-GD3BJ r1 = 1.0843 CCSD(T)/ANO1 = 1.084417 = 1.0843 r1 r1 $1.3559 \\ 116.7445$ r2 = 1.373111 r2 = r2 = 1.3558 a1 116.7351 = 115.463626 = = a1 a1 r3 = 0.986170 r3 = 0.9852 r3 = 0.9851 a2 = 113.601150 a2 = 114.5481 a2 = 114.5135 r4 d0 = 0.000000 = = 1.1277 r4 1.1277 a3 106.6199 106.6112 r4 = 1.119626 = a3 = aЗ = 105.412649 d1 = 130.3445 d1 = 130.3395 md1 = -130.3445d0 = 0.0= 128.745256 md1 =-130.3395 d1 md1 = -128.745256d0 = 0.0

1.1.2 Structural parameters of CH₃OH⁺-He

тт

н С 1 1 О 2 1 Н 3 1 Н 2 1 Н 2 1 Х 4 1 НЕ 4	r1 r2 r3 r4 r4 rd r5	1 a1 2 a2 1 d0 3 a3 4 d1 3 a3 4 md1 3 a90 2 d180 5 7 a4 3 d180			
B3LY	?/a	aug-cc-pVTZ	B3LY	P/a	aug-cc-pVTZ-GD3BJ
r1	=	0.0844	r1	=	<u> </u>
r2	=	1.356	r2	=	1.356
a1	=	116.6575	a1	=	116.6283
r3	=	0.987	r3	=	0.9869
a2	=	114.5891	a2	=	114.4738
r4	=	1.127	r4	=	1.1269
a3	=	106.6413	a3	=	106.6398
d1	=	130.2044	d1	=	130.1865
md1	=	-130.2044	md1	=	-130.1865
r5	=	1.8079	r5	=	1.7899
a4	=	85.4499	a4	=	88.4457
d0	=	0.0	d0	=	0.0
rd	=	1.0	rd	=	1.0
a90	=	90.0	a90	=	90.0
d180	=	180.0	d180	=	180.0

Vibrational wavenumbers and IR intensities (harmonic/anharmonic; cm^{-1} and $km \cdot mol^{-1}$)

1.1.3 CH₃OH⁺, B3LYP/aug-cc-pVTZ

$$\begin{split} \nu_1(a') &= 3547/3371(314/299), \nu_2(a') = 3180/3019(15/14), \nu_3(a') = 2744/2434(223/197), \nu_4(a') = 1480/1457(18/33), \nu_5(a') = 1285/1272(25/10), \nu_6(a') = 1234/1190(113/98), \nu_7(a') = 1045/1016(161/160), \nu_8(a') = 937/952(112/57), \nu_9(a'') = 2632/2411(115/89), \nu_{10}(a'') = 1214/1141(14/11), \nu_{11}(a'') = 973/939(5/3), \nu_{12}(a'') = 303/196(285/247) \end{split}$$

1.1.4 CH_3OH^+ , B3LYP/aug-cc-pVTZ-GD3BJ

 $\nu_1(a') = 3547(314), \nu_2(a') = 3180(15), \nu_3(a') = 2743(223), \nu_4(a') = 1480(18), \nu_5(a') = 1286(24), \nu_6(a') = 1235(113), \nu_7(a') = 1045(161), \nu_8(a') = 937(112), \nu_9(a'') = 2632(115), \nu_{10}(a'') = 1215(14), \nu_{11}(a'') = 973(5), \nu_{12}(a'') = 301(285)$

$1.1.5 \quad \rm CH_3OH^+-He, \ B3LYP/aug-cc-pVTZ$

$$\begin{split} \nu_1(a') &= 3511/3360(482/379), \nu_2(a') = 3179/3020(14/12), \nu_3(a') = 2748/2514(229/174), \nu_4(a') = 1481/1464(18/29/174), \nu_5(a') = 1277(26/10), \nu_6(a') = 1236/1194(113/119), \nu_7(a') = 1053/1018(146/154), \nu_8(a') = 938/957(123/56), \nu_9(a') = 158/89(7/4), \nu_{10}(a') = 54/18(6/4), \nu_{11}(a'') = 2640/2419(113/86), \nu_{12}(a'') = 1220/1146(14/10), \nu_{13}(a'') = 977/938(6/2), \nu_{14}(a'') = 339/224(279/241), \nu_{15}(a'') = 81/45(1/0.3) \end{split}$$

$1.1.6 \quad \mathrm{CH_{3}OH^{+}-He, \ B3LYP/aug-cc-pVTZ-GD3BJ}$

$$\begin{split} \nu_1(a') &= 3511(487), \, \nu_2(a') = 3179(14), \, \nu_3(a') = 2748(229), \, \nu_4(a') = 1481(19), \, \nu_5(a') = 1294(26), \, \nu_6(a') = 1237(112), \, \nu_7(a') = 1054(144), \, \nu_8(a') = 938(123), \, \nu_9(a') = 168(8), \, \nu_{10}(a') = 51(6), \, \nu_{11}(a'') = 2641(113), \, \nu_{12}(a'') = 1220(14), \, \nu_{13}(a'') = 977(6), \, \nu_{14}(a'') = 338(279), \, \nu_{15}(a'') = 82(1) \end{split}$$

1.2 Methyl oxonym cation $CH_2OH_2^+$ (1b)

Figure S2: Molecular structures of $CH_2OH_2^+$ and $CH_2OH_2^+$ -He (1b).

1.2.1 Structural parameters of $CH_2OH_2^+$

```
0
C 1 r1
H 2 r2 1 a1
H 2 r2 1 a1 3 d1
H 1 r3 2 a2 3 d2
H 1 r3 2 a2 4 md2
                      B3LYP/aug-cc-pVTZ
r1 = 1.4565
                                             B3LYP/aug-cc-pVTZ-GD3BJ
r1 = 1.4563
CCSD(T)/ANO1
         1.457493
r1
    =
r2
                                1.0776
    =
         1.078791
                       r2
                          =
                                              r2
                                                  =
                                                       1.0775
a1
    = 110.932191
                          = 111.35
                                                  = 111.3342
                       a1
                                              a1
      146.367075
                          = 148.6307
d1
    =
                       d1
                                              d1
                                                  =
    =
         0.975854
                          =
                                                 =
                                                       0.9777
r3
                       r3
                                0.9777
                                              r3
    = 114.429340
                       a2
                          = 115.5529
                                                  = 115.5189
a2
                                              a2
d2
                                                 = 39.2717
    =
        42.207644
                       d2
                          =
                             39.2307
                                              d2
md2 = -42.207644
                      md2 = -39.2309
                                             md2 = -39.2717
      Structural parameters of CH_2OH_2^+–He
1.2.2
```

```
0

C 1 r1

H 2 r2 1 a1

H 2 r3 1 a2 3 d1

H 1 r4 2 a3 3 d2

H 1 r5 2 a4 4 d3

X 6 rd 1 a90 2 d180

HE 6 r6 7 a5 1 d4

B3LYP/aug-cc-pVTZ

r1 = 1.4542

r2 = 1.0775
```

r3	=	1.0775
a1	=	111.5047
a2	=	111.4283
d1	=	148.7735
r4	=	0.9772
r5	=	0.9799
a3	=	115.5249
a4	=	115.6796
d2	=	38.9411
d3	=	-38.9528
r6	=	1.7662
a5	=	89.584
d4	=	176.3199
rd	=	1.0
a90	=	90.0
d180	=	180.0

Vibrational wavenumbers and IR intensities (harmonic/anharmonic; cm^{-1} and $km \cdot mol^{-1}$)

1.2.3 $CH_2OH_2^+$, CCSD(T)/ANO1, Harmonic/Anharmonic

 $\nu_1(a') = 3641/3467, \ \nu_2(a') = 3175/3059, \ \nu_3(a') = 1692/1650, \ \nu_4(a') = 1438/1401, \ \nu_5(a') = 952/911, \\ \nu_6(a') = 731/510, \ \nu_7(a') = 685/551, \ \nu_8(a'\prime) = 3729/3538, \ \nu_9(a'') = 3353/3222, \ \nu_{10}(a'') = 1296/1247, \\ \nu_{11}(a'') = 933/901, \ \nu_{12}(a'') = 276/216$

1.2.4 $CH_2OH_2^+$, B3LYP/aug-cc-pVTZ

$$\begin{split} \nu_1(a') &= 3595/3422(239/209), \nu_2(a') = 3160/3052(10/8), \nu_3(a') = 1675/1625(133/113), \nu_4(a') = 1428/1403(4/1), \\ \nu_5(a') &= 926/884(47/71), \nu_6(a') = 660/408(21/191), \nu_7(a') = 637/461(350/299), \nu_8(a'\prime) = 3671/3484(379/363), \\ \nu_9(a'') &= 3338/3216(24/26), \nu_{10}(a'') = 1281/1228(13/13), \nu_{11}(a'') = 922/897(4/6), \nu_{12}(a'') = 269/190(39/26) \end{split}$$

1.2.5 $CH_2OH_2^+$, B3LYP/aug-cc-pVTZ-GD3BJ

 $\nu_1(a') = 3596(239), \ \nu_2(a') = 3161(10), \ \nu_3(a') = 1675(133), \ \nu_4(a') = 1428(4), \ \nu_5(a') = 927(47), \ \nu_6(a') = 661(22), \ \nu_7(a') = 638(349), \ \nu_8(a'\prime) = 3672(379), \ \nu_9(a'') = 3339(24), \ \nu_{10}(a'') = 1282(13), \ \nu_{11}(a'') = 923(4), \ \nu_{12}(a'') = 269(39)$

1.2.6 $CH_2OH_2^+$ -He, B3LYP/aug-cc-pVTZ

$$\begin{split} \nu_1(a) &= 3657/3477(414/375), \nu_2(a) = 3567/3417(376/282), \nu_3(a) = 3338/3216(23/23), \nu_4(a) = 3162/3056(9/8), \\ \nu_5(a) &= 1679/1628(122/105), \nu_6(a) = 1429/1405(4/1), \nu_7(a) = 1285/1232(11/12), \nu_8(a) = 935/891(44/106), \\ \nu_9(a) &= 932/902(7/13), \nu_{10}(a) = 662/389(85/2389), \nu_{11}(a) = 646/451(270/144), \nu_{12}(a) = 300/230(45/25), \\ \nu_{13}(a) &= 173/110(13/8), \nu_{14}(a) = 106/83(2/2), \nu_{15}(a) = 59/54(4/5) \end{split}$$

1.2.7 $CH_2OH_2^+$ -He, B3LYP/aug-cc-pVTZ-GD3BJ

 $\begin{array}{l} \nu_1(a) = 3657(415), \ \nu_2(a) = 3567(381), \ \nu_3(a) = 3339(23), \ \nu_4(a) = 3162(9), \ \nu_5(a) = 1679(121), \ \nu_6(a) = 1430(4), \ \nu_7(a) = 1286(11), \ \nu_8(a) = 936(44), \ \nu_9(a) = 933(7), \ \nu_{10}(a) = 664(103), \ \nu_{11}(a) = 646(252), \ \nu_{12}(a) = 302(46), \ \nu_{13}(a) = 184(13), \ \nu_{14}(a) = 107(2), \ \nu_{15}(a) = 58(4) \end{array}$

1.3 Protonated methanol $CH_3OH_2^+$ (2)

Figure S3: Molecular structures of $CH_3OH_2^+$ and $CH_3OH_2^+$ -He (2).

1.3.1 Structural parameters of $CH_3OH_2^+$

CH30H2+ Η C 1 r1 O 2 r2 1 a1 H 3 r3 2 a2 1 d1 H 3 r3 2 a2 1 md1 H 2 r4 3 a3 1 d2 H 2 r4 3 a3 1 md2 B3LYP/aug-cc-pVTZ r1 = 1.0843 B3LYP/aug-cc-pVTZ-GD3BJ r1 = 1.0842 CCSD(T)/ANO1 1.085505 r1 = 1.513173 r2 = r2 = 1.522 r2 = 1.5216 108.1088 108.260510 108.0936 a1 = a1 = = a1 r3 r3 0.973644 0.9751 r3 0.975 = = = a2 = 113.730440 a2 = 114.5241 a2 = 114.4689 64.3434 -64.3434 1.0835 64.2919 d1 63.070408 d1 = d1 = = md1 =-63.070408 md1 =md1 =-64.2919 1.0834 1.084510 = r4 = r4 r4 = a3 = 104.411941 = 104.4062 a3 = 104.397 aЗ d2 = 121.138308 d2 = 121.1373 d2 = 121.1343 md2 = -121.138308md2 = -121.1373md2 = -121.1343

1.3.2 Structural parameters of CH₃OH₂⁺-He

CH3OF	12+	-Не		
C_{1}	c1			
	~2	1 1		
ц З л	2	0 = 0 + 1 + 1		
ц З 1	-Λ ·	2 a 2 1 u 1 2 a 2 1 m d 1		
Н 2 1	-5	3 = 3 + 1 + 32		
H 2 1	-6 ·	3 a 3 1 m d 2		
X 4 1	rd 1	3 a 90 5 d 180		
HE 4	r7	8 a4 3 d3		
	11	0 41 0 40		
B3LYF	P/a	ug-cc-pVTZ	B3LYP,	/aug-cc-pVTZ-GD3BJ
r1	=	1.0843	r1 =	= 1.0843
r2	=	1.5198	r2 =	= 1.5192
a1	=	108.1755	a1 =	= 108.1621
r3	=	0.9765	r3 =	= 0.9765
r4	=	0.9747	r4 =	= 0.9746
a2	=	114.5935	a2 =	= 114.4503
a22	=	114.4734	a22 =	= 114.4262
d1	=	64.5899	d1 =	= 64.5623
md1	=	-64.3166	md1 =	= -64.1941
r5	=	1.0835	r5 =	= 1.0834
r6	=	1.0835	r6 =	= 1.0834
a3	=	104.517	a3 =	= 104.5256
a32	=	104.4702	a32 =	= 104.4559
d2	=	121.1558	d2 =	= 121.1618
md2	= ·	-121.1172	md2 =	= 121.1019
r/	=	1.8325	r/ =	= 1.8085
a4	=	86.9674	a4 :	= 84.7648
d3	=	183.7775	d3 =	= 181.7929
ra	=	1.0	ra =	= 1.0
a90	=	90.0	a90 =	= 90.0
a180	=	180.0	a180 =	= 180.0

Vibrational wavenumbers and IR intensities (harmonic/anharmonic; cm^{-1} and $km \cdot mol^{-1}$)

1.3.3 $CH_3OH_2^+$, CCSD(T)/ANO1

 $\nu_1(a') = 3671/3499, \nu_2(a') = 3230/3088, \nu_3(a') = 3098/2991, \nu_4(a') = 1694/1657, \nu_5(a') = 1486/1446, \nu_6(a') = 1470/1410, \nu_7(a') = 1181/1054, \nu_8(a') = 836/791, \nu_9(a') = 736/630, \nu_{10}(a'') = 3759/3571/, \nu_{11}(a'') = 3236/3093, \nu_{12}(a'') = 1491/1446, \nu_{13}(a'') = 1296/1246, \nu_{14}(a'') = 942/913, \nu_{15}(a'') = 247/203$

1.3.4 CH₃OH₂⁺, B3LYP/aug-cc-pVTZ

$$\begin{split} \nu_1(a') &= 3631/3464(192/181), \nu_2(a') = 3211/3076(4/3), \nu_3(a') = 3090/2994(0.4/1), \nu_4(a') = 1676/1630(109/84), \\ \nu_5(a') &= 1478/1436(20/15), \nu_6(a') = 1466/1435(2/4), \nu_7(a') = 1166/1136(5/4), \nu_8(a') = 794/745(36/64), \\ \nu_9(a') &= 691/560(293/275), \nu_{10}(a'') = 3707/3529(322/304), \nu_{11}(a'') = 3215/3081(5/4), \nu_{12}(a'') = 1482/1438(18/19), \\ \nu_{13}(a'') &= 1280/1229(1/1), \nu_{14}(a'') = 928/899(7/11), \nu_{15}(a'') = 229/173(37/29) \end{split}$$

$1.3.5 \quad \mathrm{CH_{3}OH_{2}^{+}, B3LYP/aug\text{-}cc\text{-}pVTZ\text{-}GD3BJ}$

$$\begin{split} \nu_1(a') &= 3632(192), \, \nu_2(a') = 3211(4), \, \nu_3(a') = 3090(0.5), \, \nu_4(a') = 1676(109), \, \nu_5(a') = 1478(20), \, \nu_6(a') = 1467(2), \, \nu_7(a') = 1167(5), \, \nu_8(a') = 796(35), \, \nu_9(a') = 693(293), \, \nu_{10}(a'') = 3708(322), \, \nu_{11}(a'') = 3216(5), \, \nu_{12}(a'') = 1482(18), \, \nu_{13}(a'') = 1280(1), \, \nu_{14}(a'') = 929(7), \, \nu_{15}(a'') = 230(37) \end{split}$$

1.3.6 $CH_3OH_2^+$ -He, B3LYP/aug-cc-pVTZ

$$\begin{split} \nu_1(a) &= 3696/3523(364/77), \nu_2(a) = 3615/3465(279/221), \nu_3(a) = 3215/3084(5/39), \nu_4(a) = 3210/3079(3/53), \\ \nu_5(a) &= 3090/3001(0.4/1), \nu_6(a) = 1680/1634(100/79), \nu_7(a) = 1483/1440(18/165), \nu_8(a) = 1479/1439(20/151), \\ \nu_9(a) &= 1467/1436(1/3), \nu_{10}(a) = 1282/1231(1/1), \nu_{11}(a) = 1167/1107(5/4), \nu_{12}(a) = 938/908(6/10), \\ \nu_{13}(a) &= 801/754(35/56), \nu_{14}(a) = 702/580(281/259), \nu_{15}(a) = 261/221(46/32), \nu_{16}(a) = 153/101(10/6), \\ \nu_{17}(a) &= 80/83(6/6), \nu_{18}(a) = 51/68(3/4) \end{split}$$

$1.3.7 \quad \mathrm{CH_{3}OH_{2}^{+}-He, \ B3LYP/aug-cc-pVTZ-GD3BJ}$

 $\begin{array}{l} \nu_1(a) \,=\, 3696(367), \, \nu_2(a) \,=\, 3615(282), \, \nu_3(a) \,=\, 3215(5), \, \nu_4(a) \,=\, 3210(3), \, \nu_5(a) \,=\, 3090(0.4), \, \nu_6(a) \,=\, 1679(99), \, \nu_7(a) \,=\, 1483(18), \, \nu_8(a) \,=\, 1479(20), \, \nu_9(a) \,=\, 1467(2), \, \nu_{10}(a) \,=\, 1284(1), \, \nu_{11}(a) \,=\, 1168(5), \, \nu_{12}(a) \,=\, 939(7), \, \nu_{13}(a) \,=\, 804(35), \, \nu_{14}(a) \,=\, 705(281), \, \nu_{15}(a) \,=\, 262(46), \, \nu_{16}(a) \,=\, 165(10), \, \nu_{17}(a) \,=\, 80(6), \, \nu_{18}(a) \,=\, 48(3) \end{array}$

1.4 Ethanol radical cation $C_2H_5OH^+$ (3a)

Figure S4: Molecular structure of $\rm C_2H_5OH^+$ and $\rm C_2H_5OH^+-He~(3a).$

1.4.1	C_2H_5	OH^+ (3a)			
С2Н5О н	H+ C1				
0 1 r C 2 r C 3 r H 3 r H 4 r H 4 r H 4 r	1 2 1 a1 3 2 a2 4 2 a3 5 2 a4 6 3 a5 7 3 a6 8 3 a7	1 d1 4 d2 5 d3 2 d4 7 d5 8 d6			
CCSD(T)/ANO1	L	B3LYP	/aug-cc-pVTZ	B3LYP/aug-cc-pVTZ-GD3BJ
r1	=	0.976643	r1	= 0.9774	r1 = 0.9773
r2	=	1.330173	r2	= 1.3319	r2 = 1.3321
a1	=	112.888965	a1	= 114.1209	a1 = 114.045
r3	=	1.763362	r3	= 1.7598	r3 = 1.757
a2	=	104.820447	a2	= 106.3657	a2 = 106.152
d1	=	92.472403	d1	= 94.4033	d1 = 93.9388
r4	=	1.088782	r4	= 1.0893	r4 = 1.089
a3	=	111.135659	a3	= 110.6442	a3 = 110.6641
d2	=	106.613018	d2	= 106.8332	d2 = 106.9831
r5	=	1.089409	r5	= 1.0884	r5 = 1.0883
a4	=	116.832211	a4	= 116.4545	a4 = 116.4448
d3	=	141.058895	d3	= 139.083	d3 = 139.1117
r6	=	1.085127	r6	= 1.0833	r6 = 1.0831
ab	=	104.551448	ab	= 105.0759	ab = 105.0571
d4_	=	57.074850	d4	= 56.6921	d4 = 56.7513
r'í	=	1.088833	r'/	= 1.0872	r' = 1.08/1
a6	=	98.837352	a6	= 99.4346	a6 = 99.388

d5 = r8 = a7 = d6 =	119.315627 1.085801 104.969090 119.038516	d5 r8 a7 d6	= 119.3 = 1.0 = 104.8 = 119.0	3345 0 9842 5 9959 8 9609 0	d5 = r8 = a7 = d6 =	119.3374 1.084 104.9319 119.0573
C2H5OH+ C: H O 1 r1 C 2 r2 1 a C 3 r3 2 a H 3 r4 2 a H 3 r5 2 a H 4 r6 3 a H 4 r7 3 a H 4 r8 3 a X 1 rd 2 a HE 1 r10 c	A-He A2 1 d1 A3 4 d2 A4 5 d3 A5 2 d4 A6 7 d5 A7 8 d6 A90 3 d180 L0 a8 2 d7					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-cc-pVTZ B3 0.9782 r1 1.3321 r2 4.1611 a1 1.7559 r3 5.328 a2 4.5635 d1 1.0894 r4 1.6517 a3 5.9257 d2 1.0884 r5 5.3793 a4 3.8772 d3 1.0833 r6 5.1962 a5 5.7558 d4 1.0872 r7 9.5083 a6 9.3199 d5 1.0841 r8 5.0056 a7 9.0523 d6 1.938 r1 3.0738 a8 7.0022 d7 1.0 rd 9.0 a1	LYP/aug = 11 = 11 = 10 = 9 = 11 = 10 = 11 = 11 = 13 = 10 = 11 = 13 = 10 = 11 = 11 = 10 = 11 = 10 = 9 = 11 = 10 = 10 = 9 = 11 = 10 = 11 = 10 = 10 = 9 = 11 = 10 = 11 = 10 = 10 = 11 = 10 = 11 = 11 = 10 = 11 = 17 = 18 = 17 = 18 = 18	-cc-pVTZ- 0.978 1.3323 3.9872 1.7528 6.0927 3.9923 1.0891 0.6861 7.1306 1.0884 6.3439 8.8885 1.0831 5.1833 6.3439 8.8885 1.0831 5.1833 6.8564 1.0872 9.4627 9.3213 1.084 5.0623 9.0467 1.9081 9.2747 7.7112 1.0 0.0 0.0	·GD3BJ		

Vibrational wavenumbers and IR intensities (harmonic/anharmonic; cm^{-1} and $km \cdot mol^{-1}$)

1.4.2 $C_2H_5OH^+$ (3a), B3LYP/aug-cc-pVTZ

$$\begin{split} \nu_1(a) &= 3632/3445(282/7), \nu_2(a) = 3223/3080(9/8), \nu_3(a) = 3194/3054(12/9), \nu_4(a) = 3152/2989(13/12), \\ \nu_5(a) &= 3060/2949(15/16) \ \nu_6(a) = 3043/2853(15/17), \nu_7(a) = 1504/1467(1/2), \nu_8(a) = 1445/1393(8/9), \\ \nu_9(a) &= 1414/1365(11/11), \nu_{10}(a) = 1362/1322(37/34), \nu_{11}(a) = 1301/1262(39/23), \nu_{12}(a) = 1262/1231(39/38), \\ \nu_{13}(a) &= 1124/1095(96/40), \nu_{14}(a) = 1104/1072(10/14), \nu_{15}(a) = 933/894(38/40), \nu_{16}(a) = 848/833(2/1), \\ \nu_{17}(a) &= 830/810(0.4/1), \nu_{18}(a) = 480/432(15/17), \nu_{19}(a) = 391/325(128/109), \nu_{20}(a) = 280/277(10/11), \\ \nu_{21}(a) &= 212/195(2/2) \end{split}$$

1.4.3 $C_2H_5OH^+$ (3a), B3LYP/aug-cc-pVTZ-GD3BJ

 $\nu_1(a) = 3633(281), \ \nu_2(a) = 3224(9), \ \nu_3(a) = 3194(12), \ \nu_4(a) = 3154(13), \ \nu_5(a) = 3061(14) \ \nu_6(a) = 3045(15), \ \nu_7(a) = 1505(1), \ \nu_8(a) = 1446(8), \ \nu_9(a) = 1414(11), \ \nu_{10}(a) = 1363(37), \ \nu_{11}(a) = 1301(38), \ \nu_{11}(a)$

 $\nu_{12}(a) = 1262(39), \ \nu_{13}(a) = 1125(96), \ \nu_{14}(a) = 1105(10), \ \nu_{15}(a) = 934(38), \ \nu_{16}(a) = 850(2), \ \nu_{17}(a) = 833(0.4), \ \nu_{18}(a) = 480(15), \ \nu_{19}(a) = 393(128), \ \nu_{20}(a) = 281(9), \ \nu_{21}(a) = 214(2)$

1.4.4 C₂H₅OH⁺ (3a), B3LYP/aug-cc-pVTZ

 $\begin{array}{l} \nu_1(a) = 3617(399), \ \nu_2(a) = 3222(9), \ \nu_3(a) = 3193(11), \ \nu_4(a) = 3151(12), \ \nu_5(a) = 3060(15) \ \nu_6(a) = 3042(14), \ \nu_7(a) = 1504(1), \ \nu_8(a) = 1446(8), \ \nu_9(a) = 1414(11), \ \nu_{10}(a) = 1365(37), \ \nu_{11}(a) = 1302(38), \ \nu_{12}(a) = 1262(38), \ \nu_{13}(a) = 1129(89), \ \nu_{14}(a) = 1104(15), \ \nu_{15}(a) = 940(37), \ \nu_{16}(a) = 852(2), \ \nu_{17}(a) = 833(0.5), \ \nu_{18}(a) = 485(16), \ \nu_{19}(a) = 407(121), \ \nu_{20}(a) = 283(11), \ \nu_{21}(a) = 214(2), \ \nu_{22}(a) = 123(4), \ \nu_{23}(a) = 42(4), \ \nu_{24}(a) = 34(2) \end{array}$

1.4.5 $C_2H_5OH^+$ (3a), B3LYP/aug-cc-pVTZ-GD3BJ

 $\begin{array}{l} \nu_1(a) = 3618(403), \ \nu_2(a) = 3223(9), \ \nu_3(a) = 3194(11), \ \nu_4(a) = 3153(12), \ \nu_5(a) = 3061(15) \ \nu_6(a) = 3044(14), \ \nu_7(a) = 1505(1), \ \nu_8(a) = 1447(8), \ \nu_9(a) = 1414(11), \ \nu_{10}(a) = 1367(37), \ \nu_{11}(a) = 1303(37), \ \nu_{12}(a) = 1262(39), \ \nu_{13}(a) = 1131(86), \ \nu_{14}(a) = 1104(15), \ \nu_{15}(a) = 942(36), \ \nu_{16}(a) = 854(2), \ \nu_{17}(a) = 836(0.6), \ \nu_{18}(a) = 485(16), \ \nu_{19}(a) = 411(121), \ \nu_{20}(a) = 284(11), \ \nu_{21}(a) = 216(2), \ \nu_{22}(a) = 135(4), \ \nu_{23}(a) = 40(4), \ \nu_{24}(a) = 30(3) \end{array}$

1.5 Ethanol radical cation $C_2H_5OH^+$ (3b)

Figure S5: Molecular structure of $\rm C_2H_5OH^+$ and $\rm C_2H_5OH^+-He~(3b).$

1.5.1	$C_2H_5OH^+$ (3b))					
С2Н5ОН Н	I+ Cs, 3b						
0 1 r1							
$C 2 r^2$	2 1 a1						
H 4 r 4	3 a3 2 d180						
H 4 r5	5 3 a4 2 d1						
H 4 r 5	5 3 a4 2 md1 5 2 a5 1 d2						
H 3 r6	5 2 a5 1 md2						
					םע זכם		т
$r_1 = r_1$.)/ANUI - 0.083221	B3LIP	/au =	g-cc-pv12	B3LIP r1	/aug-cc-pv1Z-GD3 = 0 0813	SRJ
$r^{11} = r^{2}$	1 358555	r^{11}	=	1 3555	r^{11}	= 0.3013 = 1.3552	
a1 =	= 112 775168	a1	=	114 0055	a1	= 113 8877	
r3 =	1.494711	r3	=	1,4855	r3	= 1.4848	
a2 =	119.618689	a2	=	121.0232	a2	= 120.9075	
d0 =	• 0.000000	r4	=	1.0885	r4	= 1.0883	
r4 =	1.089719	a3	=	109.7553	a3	= 109.7657	
a3 =	· 109.313533	r5	=	1.095	r5	= 1.0949	
d180 =	= 180.000000	a4	=	111.1662	a4	= 111.1055	
r5 =	1.093195	d1	=	60.1149	d1	= 60.0933	
a4 =	110.618914	md1	=	-60.1149	md1	= -60.0933	
d1 =	60.651760	r6	=	1.1368	r6	= 1.1366	
md1 =	-60.651760	a5	=	104.5289	a5	= 104.5755	
r6 =	1.134170	d2	=	133.2604	d2	= 133.2131	
a5 =	= 103.829552	md2	=	-133.2604	md2	= -133.2131	
d2 =	= 132.823046	d180	=	180.0	d180	= 180.0	
md2 =	= -132.823046	d0	=	0.0	d0	= 0.0	

January 14, 2019

1.5.2	$C_2H_5OH^+-H_5OH^+$	le (3b)	
C2H5OH	+-He Cs, 3b			
	1 a1 2 a2 1 d0 3 a3 2 d180 3 a4 2 d1 3 a4 2 md1 2 a5 1 d2 2 a5 1 md2 2 a90 3 d180 7 10 a6 2 d3			
B3LYP/	aug-cc-pVTZ 0.9823	B3LYE	?/a =	ug-cc-pVTZ-GD3BJ 0.9822
r2 =	1.3553	r2	=	1.355
$a_1 = -2$	114.2321	ai 2	=	114.0318
$r_{3} = -$	1.400	r3 22	_	1.4003
az - rA - rA	1 0885	az r1	_	1 0883
a3 =	109 7169	23 23	_	109 7357
r5 =	1 0948	r5	=	1 0946
a4 =	111 1762	24	=	111 1092
d1 =	60.1362	d1	=	60.1093
md1 =	-60.1362	md1	=	-60.1093
r6 =	1.1365	r6	=	1.1362
a5 =	104.5292	a5	=	104.5875
d2 =	133.2045	d2	=	133.1461
md2 =	-133.2045	md2	=	-133.1461
r7 =	1.9368	r7	=	1.8994
a6 =	73.4955	a6	=	78.3794
d3 =	180.0	d3	=	180.0
d180 =	180.0	d180	=	180.0
d0 =	0.0	d0	=	0.0
rd =	1.0	rd	=	1.0
a90 =	90.0	a90	=	90.0

Vibrational wavenumbers and IR intensities (harmonic/anharmonic; cm^{-1} and $km \cdot mol^{-1}$)

$C_2H_5OH^+$ (3b), B3LYP/aug-cc-pVTZ 1.5.3

 $\nu_1(a') = 3581(245), \ \nu_2(a') = 3126(3), \ \nu_3(a') = 2999(66), \ \nu_4(a') = 2687(153), \ \nu_5(a') = 1458(4), \ \nu_6(a') = 1458(4), \ \nu_$ $1414(57), \nu_7(a') = 1340(47), \nu_8(a') = 1297(31), \nu_9(a') = 1157(199), \nu_{10}(a') = 1044(113), \nu_{11}(a') = 1044(113), \nu_{11$ 1000(39), $\nu_{12}(a') = 888(38)$, $\nu_{13}(a') = 433(5)$, $\nu_{14}(a'') = 3051(5)$, $\nu_{15}(a'') = 2509(75)$ $\nu_{16}(a'') = 1440(13)$ $\nu_{17}(a'') = 1055(0.3) \ \nu_{18}(a'') = 1015(18) \ \nu_{19}(a'') = 637(5) \ \nu_{20}(a'') = 357(200) \ \nu_{21}(a'') = 113(6)$

1.5.4 $C_2H_5OH^+$ (3b), B3LYP/aug-cc-pVTZ-GD3BJ

 $\nu_1(a') = 3581(243), \ \nu_2(a') = 3127(3), \ \nu_3(a') = 3000(66), \ \nu_4(a') = 2688(153), \ \nu_5(a') = 1458(4), \ \nu_6(a') = 1458(4), \ \nu_6(a') = 1458(4), \ \nu_6(a') = 1458(4), \ \nu_6(a') = 1458(4), \ \nu_8(a') = 1458(4), \ \nu_$ 1414(57), $\nu_7(a') = 1341(47)$, $\nu_8(a') = 1298(31)$, $\nu_9(a') = 1158(198)$, $\nu_{10}(a') = 1046(114)$, $\nu_{11}(a') = 1046$ 1001(38), $\nu_{12}(a') = 889(38)$, $\nu_{13}(a') = 434(5)$, $\nu_{14}(a'') = 3052(5)$, $\nu_{15}(a'') = 2511(75)$ $\nu_{16}(a'') = 1441(13)$ $\nu_{17}(a'') = 1055(0.4) \ \nu_{18}(a'') = 1016(18) \ \nu_{19}(a'') = 637(5) \ \nu_{20}(a'') = 355(200) \ \nu_{21}(a'') = 115(6)$

$C_{2}H_{5}OH^{+}-He$ (3b), B3LYP/aug-cc-pVTZ 1.5.5

 $\nu_1(a') = 3564(350), \ \nu_2(a') = 3126(2), \ \nu_3(a') = 3001(64), \ \nu_4(a') = 2689(157), \ \nu_5(a') = 1459(4), \ \nu_6(a') = 1459(4), \ \nu_$ 1415(55), $\nu_7(a') = 1341(51), \nu_8(a') = 1298(27), \nu_9(a') = 1160(197), \nu_{10}(a') = 1047(113), \nu_{11}(a') = 1047(113), \nu_{11$ $1001(44), \nu_{12}(a') = 887(41), \nu_{13}(a') = 435(6), \nu_{14}(a') = 124(5), \nu_{15}(a') = 41(1), \nu_{16}(a'') = 3054(4),$ $\nu_{17}(a'') = 2514(74), \ \nu_{18}(a'') = 1442(13), \ \nu_{19}(a'') = 1058(0.3), \ \nu_{20}(a'') = 1018(18), \ \nu_{21}(a'') = 642(6), \\ \nu_{22}(a'') = 375(192), \ \nu_{23}(a'') = 127(2), \ \nu_{23}(a'') = 49(0.3)$

1.5.6 C₂H₅OH⁺-He (3b), B3LYP/aug-cc-pVTZ-GD3BJ

 $\begin{array}{l} \nu_1(a')=3563(359), \ \nu_2(a')=3127(2), \ \nu_3(a')=3002(63), \ \nu_4(a')=2690(158), \ \nu_5(a')=1459(4), \ \nu_6(a')=1416(55), \ \nu_7(a')=1342(50), \ \nu_8(a')=1301(28), \ \nu_9(a')=1161(194), \ \nu_{10}(a')=1049(110), \ \nu_{11}(a')=1002(44), \ \nu_{12}(a')=889(42), \ \nu_{13}(a')=436(5), \ \nu_{14}(a')=137(5), \ \nu_{15}(a')=40(1), \ \nu_{16}(a'')=3055(4), \ \nu_{17}(a'')=2516(74), \ \nu_{18}(a'')=1443(13), \ \nu_{19}(a'')=1058(0.4), \ \nu_{20}(a'')=1018(18), \ \nu_{21}(a'')=643(7), \ \nu_{22}(a'')=374(191), \ \nu_{23}(a'')=129(3), \ \nu_{23}(a'')=49(0.3) \end{array}$

1.6 Protonated ethanol $C_2H_5OH_2^+$ -gauche (4a)

Figure S6: Molecular structures of $C_2H_5OH_2^+$, $C_2H_5OH_2^+$ –He(a) (4a, bottom left) and $C_2H_5OH_2^+$ –He(g) (4a', bottom right).

1.6.1 Structural parameters of $C_2H_5OH_2^+$ -gauche (4a)

C2H5OH2+ gauche H C 1 r1 C 2 r2 1 a1 O 3 r3 2 a2 1 d1 H 4 r4 3 a3 2 d2 H 2 r5 3 a4 1 d3 H 2 r6 3 a5 1 d4 H 3 r7 2 a6 6 d5 H 3 r8 2 a7 7 d6 H 4 r9 3 a8 5 d7		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	B3LYP/aug-cc-pVTZ r1 = 1.0927 r2 = 1.4939 a1 = 106.859 r3 = 1.5702 a2 = 107.4967 d1 = -178.4855 r4 = 0.9744 d2 = -179.0934 r5 = 1.0882 a4 = 112.0321 d3 = 118.0188 r6 = 1.0907 a5 = 112.3566 d4 = -117.0361	B3LYP/aug-cc-pVTZ-GD3BJ r1 = 1.0924 r2 = 1.4932 a1 = 106.9314 r3 = 1.5684 a2 = 107.3179 d1 = -178.4815 r4 = 0.9743 d2 = -178.0746 r5 = 1.088 a4 = 111.956 d3 = 118.0814 r6 = 1.0906 a5 = 112.267 d4 = -117.0819

r7	=	1.086372	r7 =	1.0851	r7 =	1.0849
a6	=	114.403311	a6 =	114.6768	a6 =	114.6953
d5	=	51.878331	d5 =	51.1487	d5 =	51.2074
r8	=	1.087513	r8 =	1.086	r8 =	1.0858
a7	=	114.812203	a7 =	115.118	a7 =	115.0981
d6	=	-52.585745	d6 =	-51.8483	d6 =	-51.8258
r9	=	0.973603	r9 =	0.9745	r9 =	0.9744
a8	=	112.580013	a8 =	113.411	a8 =	113.2412
d7	=	125.019226	d7 =	127.1281	d7 =	127.0566

india berabtarar parameters of coursels and a fill	1.6.2	Structural	parameters	of C	H_5	OH_2^+ -	-He(a)	(4a)
--	-------	------------	------------	------	-------	------------	------	----	------

C2H5OH2+ gauche, He at H5 Η С 1 r1 C 2 r2 1 a1 0 3 r3 2 a2 1 d1 H 4 r4 3 a3 2 d2 H 2 r5 3 a4 1 d3 H 2 r6 3 a5 1 d4 H 3 r7 2 a6 6 d5 H 3 r8 2 a7 7 d6 H 4 r9 3 a8 5 d7 X 5 rd 4 a90 3 d0 HE 5 r10 11 a9 4 d8 B3LYP/aug-cc-pVTZ B3LYP/aug-cc-pVTZ-GD3BJ r1 = 1.0925 r1 = ĭ.0922 1.4937 107.0078 r2 = 1.4944 r2 = a1 = 106.9294 a1 = r3 = 1.5669 r3 = 1.5648 a2 = 107.5642 a2 = 107.402 d1 = -178.5052d1 = -178.4942r4 = r4 = 0.9754 0.9753 a3 = 114.539 a3 = 114.4518 d2 = -179.208d2 = -178.213r5 = r5 = 1.0882 1.0881 a4 = 112.0059 a4 = 111.9258 d3 = 118.0689 d3 = 118.1353 1.0906 112.2352 r6 = r6 = 1.0907 a5 = 112.3277 a5 = d4 = -117.0835-117.1354 d4 = r7 = 1.0851 r7 = 1.0849 a6 = a6 = 114.6053 114.6205 d5 = 51.3088 d5 = 51.3856 r8 = 1.086 r8 = 1.0858 115.0433 115.0214 a7 = a7 = -52.0394 d6 = -52.0288 d6 = r9 = 0.9742 r9 = 0.9741 113.3724 127.329 1.8895 a8 = 113.2142 127.2103 1.8595 a8 = d7 = d7 = r10= r10= 88.4025 a9 = 91.7425 a9 = d8 = d8 = 175.3107 174.9381 rd = 1.0 rd = 1.0 90.0 a90= a90= 90.0 d0 = d0 = 0.0 0.0

1.6.3 Structural p	parameters of $C_2H_5OH_2^+$ –He(g) (4a')
C2H5OH2+ gauche, H H C 1 r1 C 2 r2 1 a1 O 3 r3 2 a2 1 d1 H 4 r4 3 a3 2 d2 H 2 r5 3 a4 1 d3 H 2 r6 3 a5 1 d4 H 3 r7 2 a6 6 d5 H 3 r8 2 a7 7 d6 H 4 r9 3 a8 5 d7 X 10 rd 4 a90 3 d0 HE 10 r10 11 a9 4	e at H10 d8
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	B3LYP/aug-cc-pVTZ-GD3BJ r1 = 1.0922 r2 = 1.4937 a1 = 106.9588 r3 = 1.5656 a2 = 107.3945 d1 = -178.3229 r4 = 0.974 a3 = 114.3553 d2 = -179.2865 r5 = 1.088 a4 = 111.916 d3 = 118.0873 r6 = 1.0903 a5 = 112.2692 d4 = -117.1635 r7 = 1.0849 a6 = 114.6079 d5 = 51.5113 r8 = 1.0858 a7 = 115.0504 d6 = -51.8741 r9 = 0.9754 a8 = 113.4258 d7 = 127.154 r10 = 1.8873 a9 = 96.612 d8 = 180.9937 rd = 1.0 a90 = 90.0 d0 = 0.0

Vibrational wavenumbers and IR intensities (harmonic/anharmonic; cm^{-1} and $km \cdot mol^{-1}$)

1.6.4 $C_2H_5OH_2^+$ -gauche, B3LYP/aug-cc-pVTZ

 $\begin{array}{l} \nu_1(a) = 3719(265), \ \nu_2(a) = 3634(167), \ \nu_3(a) = 3183(0.4), \ \nu_4(a) = 3129(1), \ \nu_5(a) = 3108(2), \ \nu_6(a) = 3095(2), \ \nu_7(a) = 3038(8), \ \nu_8(a) = 1654(128), \ \nu_9(a) = 1504(7), \ \nu_{10}(a) = 1496(4), \ \nu_{11}(a) = 1475(11), \ \nu_{12}(a) = 1420(26), \ \nu_{13}(a) = 1399(12), \ \nu_{14}(a) = 1287(3), \ \nu_{15}(a) = 1197(9), \ \nu_{16}(a) = 1140(16), \ \nu_{17}(a) = 953(28), \ \nu_{18}(a) = 915(7), \ \nu_{19}(a) = 823(1), \ \nu_{20}(a) = 695(193), \ \nu_{21}(a) = 632(111), \ \nu_{22}(a) = 365(4), \ \nu_{23}(a) = 257(3), \ \nu_{24}(a) = 185(47) \end{array}$

$1.6.5 \quad \mathrm{C_2H_5OH_2^+}\text{-}gauche, \ \mathrm{B3LYP/aug\text{-}cc\text{-}pVTZ}, \ \mathrm{GD3BJ}$

 $\begin{array}{l} \nu_1(a) \,=\, 3720(265), \ \nu_2(a) \,=\, 3634(165), \ \nu_3(a) \,=\, 3185(0.4), \ \nu_4(a) \,=\, 3130(1), \ \nu_5(a) \,=\, 3109(2), \ \nu_6(a) \,=\, 3097(2), \ \nu_7(a) \,=\, 3039(8), \ \nu_8(a) \,=\, 1654(129), \ \nu_9(a) \,=\, 1505(7), \ \nu_{10}(a) \,=\, 1496(4), \ \nu_{11}(a) \,=\, 1476(11), \end{array}$

 $\nu_{12}(a) = 1421(26), \ \nu_{13}(a) = 1400(11), \ \nu_{14}(a) = 1287(2), \ \nu_{15}(a) = 1198(9), \ \nu_{16}(a) = 1142(16), \ \nu_{17}(a) = 955(27), \ \nu_{18}(a) = 917(8), \ \nu_{19}(a) = 824(1), \ \nu_{20}(a) = 697(189), \ \nu_{21}(a) = 635(115), \ \nu_{22}(a) = 366(4), \ \nu_{23}(a) = 258(3), \ \nu_{24}(a) = 187(47)$

1.6.6 $C_2H_5OH_2^+$ -gauche-He(a) (4a), B3LYP/aug-cc-pVTZ

 $\begin{array}{l} \nu_1(a) = 3708(309), \ \nu_2(a) = 3624(239), \ \nu_3(a) = 3182(0.3), \ \nu_4(a) = 3129(1), \ \nu_5(a) = 3108(2), \ \nu_6(a) = 3096(2), \ \nu_7(a) = 3039(7), \ \nu_8(a) = 1658(120), \ \nu_9(a) = 1505(7), \ \nu_{10}(a) = 1496(4), \ \nu_{11}(a) = 1476(11), \ \nu_{12}(a) = 1421(26), \ \nu_{13}(a) = 1401(12), \ \nu_{14}(a) = 1288(3), \ \nu_{15}(a) = 1200(8), \ \nu_{16}(a) = 1141(15), \ \nu_{17}(a) = 954(27), \ \nu_{18}(a) = 923(8), \ \nu_{19}(a) = 824(1), \ \nu_{20}(a) = 706(183), \ \nu_{21}(a) = 640(113), \ \nu_{22}(a) = 370(2), \ \nu_{23}(a) = 258(6), \ \nu_{24}(a) = 223(48) \ \nu_{25}(a) = 133(5) \ \nu_{26}(a) = 41(3) \ \nu_{27}(a) = 38(4) \end{array}$

1.6.7 C₂H₅OH⁺₂-gauche-He(a) (4a), B3LYP/aug-cc-pVTZ-GD3BJ

 $\begin{array}{l} \nu_1(a) = 3709(315), \ \nu_2(a) = 3625(241), \ \nu_3(a) = 3184(0.3), \ \nu_4(a) = 3130(1), \ \nu_5(a) = 3109(2), \ \nu_6(a) = 3098(2), \ \nu_7(a) = 3040(7), \ \nu_8(a) = 1657(119), \ \nu_9(a) = 1505(7), \ \nu_{10}(a) = 1496(4), \ \nu_{11}(a) = 1477(11), \ \nu_{12}(a) = 1422(26), \ \nu_{13}(a) = 1401(11), \ \nu_{14}(a) = 1289(3), \ \nu_{15}(a) = 1201(8), \ \nu_{16}(a) = 1143(15), \ \nu_{17}(a) = 957(26), \ \nu_{18}(a) = 926(9), \ \nu_{19}(a) = 825(1), \ \nu_{20}(a) = 709(178), \ \nu_{21}(a) = 643(116), \ \nu_{22}(a) = 372(2), \ \nu_{23}(a) = 259(6), \ \nu_{24}(a) = 226(49) \ \nu_{25}(a) = 145(5) \ \nu_{26}(a) = 40(3) \ \nu_{27}(a) = 37(4) \end{array}$

1.6.8 C₂H₅OH₂⁺-gauche-He(g) (4a'), B3LYP/aug-cc-pVTZ

 $\begin{array}{l} \nu_1(a) = 3711(301), \ \nu_2(a) = 3625(218), \ \nu_3(a) = 3182(0.3), \ \nu_4(a) = 3130(1), \ \nu_5(a) = 3108(2), \ \nu_6(a) = 3097(2), \ \nu_7(a) = 3040(7), \ \nu_8(a) = 1658(125), \ \nu_9(a) = 1504(7), \ \nu_{10}(a) = 1497(4), \ \nu_{11}(a) = 1476(11), \ \nu_{12}(a) = 1421(26), \ \nu_{13}(a) = 1400(12), \ \nu_{14}(a) = 1288(3), \ \nu_{15}(a) = 1200(8), \ \nu_{16}(a) = 1140(16), \ \nu_{17}(a) = 954(27), \ \nu_{18}(a) = 921(7), \ \nu_{19}(a) = 823(1), \ \nu_{20}(a) = 706(187), \ \nu_{21}(a) = 638(106), \ \nu_{22}(a) = 367(4), \ \nu_{23}(a) = 257(3), \ \nu_{24}(a) = 219(48) \ \nu_{25}(a) = 127(6) \ \nu_{26}(a) = 47(3) \ \nu_{27}(a) = 41(2) \end{array}$

1.6.9 C₂H₅OH⁺₂-gauche-He(g) (4a'), B3LYP/aug-cc-pVTZ-GD/3BJ

 $\begin{array}{l} \nu_1(a) = 3712(307), \ \nu_2(a) = 3626(221), \ \nu_3(a) = 3184(0.2), \ \nu_4(a) = 3131(1), \ \nu_5(a) = 3109(2), \ \nu_6(a) = 3099(2), \ \nu_7(a) = 3041(7), \ \nu_8(a) = 1658(124), \ \nu_9(a) = 1505(7), \ \nu_{10}(a) = 1497(4), \ \nu_{11}(a) = 1477(11), \ \nu_{12}(a) = 1422(26), \ \nu_{13}(a) = 1401(11), \ \nu_{14}(a) = 1289(2), \ \nu_{15}(a) = 1201(9), \ \nu_{16}(a) = 1142(16), \ \nu_{17}(a) = 957(26), \ \nu_{18}(a) = 924(8), \ \nu_{19}(a) = 824(1), \ \nu_{20}(a) = 709(183), \ \nu_{21}(a) = 643(109), \ \nu_{22}(a) = 369(4), \ \nu_{23}(a) = 258(3), \ \nu_{24}(a) = 222(49) \ \nu_{25}(a) = 141(6) \ \nu_{26}(a) = 47(3) \ \nu_{27}(a) = 42(2) \end{array}$

$1.7 \quad \mathrm{C_2H_5OH_2^+}\text{-}anti~\mathrm{(4b)}$

Figure S7: Molecular structure of $C_2H_5OH_2^+$ (*anti*) and $C_2H_5OH_2^+$ -He **4b**.

1.7.1 Structural parameters of $C_2H_5OH_2^+$ -anti

C2H5	OH2	2+						
C 1 O 2 H 1 H 1 H 2 H 3 H 3	r1 r2 r4 r5 r5 r6 r6	1 a1 2 a2 3 d180 2 a3 4 d1 2 a3 4 md1 1 a4 4 d2 1 a4 4 md2 2 a5 1 d3 2 a5 1 md3						
CCSD	(Т)		B3I VI	⊃/s	uug-cc-nVT7	B3I VI	D/2	aug-cc-nVT7-GD3BI
r1	=	1 501281	r1	=	1 4949	r1	=	1 4942
r^2	=	1 544505	r^{11}	=	1 5681	r^{11}	=	1 5664
a1	=	110 801843	a1	=	111 2695	a1	=	111 0468
r3	=	1 092989	r3	=	1 0932	r3	=	1 0929
22 2	=	107 089219	22 2	=	106 8116	22 2	=	106 9034
d180	=	180 000000	r4	=	1 0898	r4	=	1 0896
r4	=	1 090956	23	=	112 4873	23	=	112 3939
a3	=	112 026908	d1	=	117 4347	d1	=	117 507
d1	=	117 810144	md1	=	-117 4347	md1	=	-117 507
md1	=	-117 810144	r5	=	1 0853	r5	=	1 0851
r5	=	1 086555	a4	=	115 4515	a4	=	115 4619
a4	=	115 155944	d2	=	65 5544	d2	=	65 5983
d2	=	65 230970	md2	=	-65 5544	md2	=	-65 5983
md2	=	-65 230970	r6	=	0 9744	r6	=	0 9744
r6	=	0 973587	a5	=	113 6093	a5	=	113 3882
a5	=	112 720907	d3	=	62 8805	d3	=	62 6501
d3	=	61.676365	md3	=	-62.8805	md3	=	-62.6501
md3	=	-61.676365	d180	=	180.0	d180	=	180.0

_	202
С2Н50Н2+-Не	
C 1 r1 C 2 r2 1 a1 H 1 r3 2 a2 3 d5 H 1 r4 2 a3 4 d1 H 1 r5 2 a4 4 md1 H 2 r6 1 a5 4 d2 H 2 r7 1 a6 4 md2 H 3 r8 2 a7 1 d3 H 3 r9 2 a8 1 md3 X 10 rd 3 a90 2 d0 HE 10 r10 11 a9 3 d4	
B3LYP/aug-cc-pVTZ	B3LYP/aug-cc-pVTZ-GD3BJ
r1 = 1.4954	r1 = 1.4948
r2 = 1.5651	r2 = 1.5631
a1 = 111.3175	a1 = 111.0805
$a^{13} = 106.8606$	$a_{2} = 106.9654$
a3 = 112.4405	a3 = 112.3447
a4 = 112.4919	a4 = 112.3883
r4 = 1.0898	r4 = 1.0897
a5 = 115.3942 a6 = 115.3656	a5 = 115.3949 a6 = 115.3807
d1 = 117.4148	d1 = 117.4993
md1 = -117.5383	md1 = -117.6156
r5 = 1.0896	r5 = 1.0895
a7 = 113.5732	a7 = 113.3567
$a\delta = 113.822\delta$ d2 = 65.5825	$a\delta = 113.4719$ d2 = 65.6112
md2 = -65.2829	md2 = -65.3307
r6 = 1.0853	r6 = 1.0851
d3 = 61.3944	d3 = 61.3395
md3 = -64.7257	md3 = -64.2371
$r_{1} = 1.0852$ $r_{2} = 0.9742$	$r_{1} = 1.085$ $r_{2} = 0.9741$
$r_{9} = 0.9754$	$r_{9} = 0.9753$
r10 = 1.9032	r10 = 1.868
a9 = 94.9268	a9 = 90.1848
d4 = 172.369	d4 = 172.2502
a = 180.1597	$a_{0} = 180.1233$ $a_{0} = 90.0$
d0 = 0.0	d0 = 0.0
rd = 1.0	rd = 1.0

1.7.2 Structural parameters of C₂H₅OH₂⁺-anti-He (4b)

Vibrational wavenumbers and IR intensities (harmonic/anharmonic; cm^{-1} and $km \cdot mol^{-1}$)

1.7.3 $C_2H_5OH_2^+$ -anti, CCSD(T)/ANO1, Harmonic/Anharmonic

$$\begin{split} \nu_1(a') &= 3669/3496, \ \nu_2(a') = 3135/3006, \ \nu_3(a') = 3126/2992, \ \nu_4(a') = 3047/2946, \ \nu_5(a') = 1687/1651, \\ \nu_6(a') &= 1507/1467, \ \nu_7(a') = 1496/1416, \ \nu_8(a') = 1423/1391, \ \nu_9(a') = 1389/1351, \ \nu_{10}(a') = 1128/1138, \\ \nu_{11}(a') &= 967/935, \ \nu_{12}(a') = 760/667, \ \nu_{13}(a') = 707/651, \ \nu_{14}(a') = 370/365, \ \nu_{15}(a'') = 3760/3572 \\ \nu_{16}(a'') &= 3208/3065 \ \nu_{17}(a'') = 3141/2997 \ \nu_{18}(a'') = 1486/1442 \ \nu_{19}(a'') = 1333/1297 \ \nu_{20}(a'') = 1234/1195 \\ \nu_{21}(a'') &= 935/885 \ \nu_{22}(a'') = 796/790 \ \nu_{23}(a'') = 267/259 \ \nu_{24}(a'') = 188/151 \end{split}$$

1.7.4 C₂H₅OH₂⁺-anti, B3LYP/aug-cc-pVTZ

 $\nu_1(a') = 3636(157), \ \nu_2(a') = 3118(1), \ \nu_3(a') = 3095(2), \ \nu_4(a') = 3035(8), \ \nu_5(a') = 1666(103), \ \nu_6(a') = 1502(10), \ \nu_7(a') = 1493(1), \ \nu_8(a') = 1421(16), \ \nu_9(a') = 1380(14), \ \nu_{10}(a') = 1117(20), \ \nu_{11}(a') = 947(31), \ \nu_{10}(a') = 1117(20), \ \nu_{11}(a') = 947(31), \ \nu_{10}(a') = 1117(20), \ \nu_{11}(a') = 11117(20), \ \nu_{11}(a') = 1117(20), \ \nu_{11}(a') = 1117(20),$

 $\begin{array}{l} \nu_{12}(a') \ = \ 713(186), \ \nu_{13}(a') \ = \ 636(177), \ \nu_{14}(a') \ = \ 364(10), \ \nu_{15}(a'') \ = \ 3717(258), \ \nu_{16}(a'') \ = \ 3186(1), \\ \nu_{17}(a'') \ = \ 3118(2), \ \nu_{18}(a'') \ = \ 1478(14), \ \nu_{19}(a'') \ = \ 1313(4), \ \nu_{20}(a'') \ = \ 1223(4), \ \nu_{21}(a'') \ = \ 913(0.1), \\ \nu_{22}(a'') \ = \ 796(6), \ \nu_{23}(a'') \ = \ 262(0.4), \ \nu_{24}(a'') \ = \ 167(54) \end{array}$

1.7.5 C₂H₅OH⁺₂-anti, B3LYP/aug-cc-pVTZ-GD3BJ

 $\begin{array}{l} \nu_1(a') = 3636(156), \ \nu_2(a') = 3120(1), \ \nu_3(a') = 3097(2), \ \nu_4(a') = 3036(8), \ \nu_5(a') = 1667(103), \ \nu_6(a') = 1503(10), \ \nu_7(a') = 1493(1), \ \nu_8(a') = 1422(16), \ \nu_9(a') = 1381(14), \ \nu_{10}(a') = 1119(20), \ \nu_{11}(a') = 949(30), \ \nu_{12}(a') = 721(189), \ \nu_{13}(a') = 640(174), \ \nu_{14}(a') = 367(11), \ \nu_{15}(a'') = 3717(257), \ \nu_{16}(a'') = 3187(1), \ \nu_{17}(a'') = 3119(2), \ \nu_{18}(a'') = 1479(14), \ \nu_{19}(a'') = 1314(4), \ \nu_{20}(a'') = 1224(4), \ \nu_{21}(a'') = 915(0.1), \ \nu_{22}(a'') = 798(5), \ \nu_{23}(a'') = 263(0.3), \ \nu_{24}(a'') = 168(55) \end{array}$

1.7.6 C₂H₅OH⁺₂-anti-He (4b), B3LYP/aug-cc-pVTZ

 $\begin{array}{l} \nu_1(a) = 3709(300), \ \nu_2(a) = 3627(213), \ \nu_3(a) = 3185(0.5), \ \nu_4(a) = 3118(1), \ \nu_5(a) = 3118(1), \ \nu_6(a) = 3096(2), \ \nu_7(a) = 3036(8), \ \nu_8(a) = 1669(97), \ \nu_9(a) = 1503(10), \ \nu_{10}(a) = 1493(1), \ \nu_{11}(a) = 1479(14), \ \nu_{12}(a) = 1422(16), \ \nu_{13}(a) = 1381(14), \ \nu_{14}(a) = 1315(4), \ \nu_{15}(a) = 1224(3), \ \nu_{16}(a) = 1117(19), \ \nu_{17}(a) = 948(31), \ \nu_{18}(a) = 921(0), \ \nu_{19}(a) = 797(5), \ \nu_{20}(a) = 719(178), \ \nu_{21}(a) = 643(175), \ \nu_{22}(a) = 367(9), \ \nu_{23}(a) = 262(0.4) \ \nu_{24}(a) = 208(58) \ \nu_{25}(a) = 134(7) \ \nu_{26}(a) = 44(2) \ \nu_{27}(a) = 40(2) \end{array}$

$1.7.7 \quad \mathrm{C_2H_5OH_2^+}\text{-}anti\text{-}\mathrm{He}~(\mathrm{4b}),~\mathrm{B3LYP/aug\text{-}cc\text{-}pVTZ\text{-}GD3BJ}$

 $\begin{array}{l} \nu_1(a) = 3708(304), \ \nu_2(a) = 3627(214), \ \nu_3(a) = 3187(0.5), \ \nu_4(a) = 3120(1), \ \nu_5(a) = 3119(2), \ \nu_6(a) = 3097(2), \ \nu_7(a) = 3037(7), \ \nu_8(a) = 1670(95), \ \nu_9(a) = 1503(10), \ \nu_{10}(a) = 1494(1), \ \nu_{11}(a) = 1480(14), \ \nu_{12}(a) = 1422(16), \ \nu_{13}(a) = 1382(13), \ \nu_{14}(a) = 1316(4), \ \nu_{15}(a) = 1226(3), \ \nu_{16}(a) = 1119(20), \ \nu_{17}(a) = 951(30), \ \nu_{18}(a) = 924(0), \ \nu_{19}(a) = 799(5), \ \nu_{20}(a) = 729(182), \ \nu_{21}(a) = 648(171), \ \nu_{22}(a) = 370(9), \ \nu_{23}(a) = 263(0.4) \ \nu_{24}(a) = 211(60) \ \nu_{25}(a) = 147(7) \ \nu_{26}(a) = 43(1) \ \nu_{27}(a) = 39(2) \end{array}$

2 Molecular structures

2.1 Energetics

Absolute energies, relative energies, harmonic zero-point vibrational energies (ZPE) and He binding energies $(E_{\rm b})$ in units of hartree unless noted otherwise.

Id.	Ion	Ion-He	ZPE(I)	ZPE(I-He)	He-atom	$E_{\rm b}$	$E_{\rm b}$ ^a
1a	-115.383480	-118.299484	0.046869	0.047630	-2.914694	0.000549	120.6
1b	-115.387709	-118.303927	0.049126	0.049961	-2.914694	0.000689	151.2
2	-116.074455	-118.990368	0.063890	0.064626	-2.914694	0.000484	106.1
3a	-154.736549	-157.652063	0.076990	0.077513	-2.914694	0.000298	65.4
3b	-154.733362	-157.648883	0.074270	0.074872	-2.914694	0.000225	49.4
4a	-155.417676	-158.333356	0.091820	0.092450	-2.914694	0.000356	78.2
4a'	-155.417676	-158.333238	0.091820	0.092440	-2.914694	0.000248	54.4
4b	-155.417240	-158.332871	0.091807	0.092436	-2.914694	0.000308	67.7

Table S1: B3LYP/aug-cc-pVT level of theory.

Note: $a - in cm^{-1}$.

Table S2: B3LYP/aug-cc-pVTZ-GD3BJ level of theory.

Id.	Ion	Ion-He	ZPE(I)	$\mathbf{ZPE}(\mathbf{I}\text{-}\mathbf{He})$	He-atom	$E_{\rm b}$	$E_{\rm b}$ ^a
1a	-115.386574	-118.302902	0.046874	0.047660	-2.914694	0.000848	186.2
1b	-115.391013	-118.307597	0.049141	0.050006	-2.914694	0.001024	224.8
2	-116.078458	-118.994724	0.063914	0.064681	-2.914694	0.000806	176.8
3a	-154.743600	-157.659443	0.077036	0.077587	-2.914694	0.000598	131.2
3b	-154.740465	-157.656341	0.074307	0.074950	-2.914694	0.000538	118.2
4a	-155.425817	-158.341843	0.091886	0.092549	-2.914694	0.000669	146.9
4a'	-155.425817	-158.341763	0.091886	0.092556	-2.914694	0.000582	127.7
4b	-155.425459	-158.341469	0.091889	0.092559	-2.914694	0.000646	141.8

Note: $a - in cm^{-1}$.

Table S3: CCSD(T)/aug-cc-pVTZ level of theory.

Id.	Ion	Ion-He	ZPE(I)	ZPE(I-He)	He-atom	$E_{\rm b}$	$E_{\rm b}$ ^a
2	-115.860892	-118.762867	0.064544	0.065225	-2.900598	0.000696	152.7
Mater	a in $an -1$						

Note: $a - in cm^{-1}$.

Id.	Ion	$\mathrm{ZPE}(\mathrm{Ion})$	$E_{ m rel}$	$E_{\rm rel} \; (\rm kcal/mol)$
1a	-115.168175	0.046818	0.010938	6.9
1b	-115.182191	0.049897	0.0	0.0
3a	-154.436055	0.076990	0.0	0.0
3b	-154.429421	0.074270	0.003913	2.5
4a'	-155.124827	0.092856	0.000443	0.3
4a	-155.125299	0.092885	0.0	0.0

Table S4: Relative energies of ion isomeric pairs (bare ions) at CCSD(T)/ANO1 (except for ZPE for 3a/3b calculated at the B3LYP/aug-ccpVTZ level).

2.2 Influence of the He tag

Table S5: Band position shift induced by the He tag at B3LYP/aug-cc-pVTZ level of theory for selected ions. Unscaled.

Methanol radical			Protonated methanol Ethano			anol radi	cal	Proto	nated eth	anol	
	1a			2 3a					4a		
I.	$+\mathrm{He}$	Δ	I.	$+\mathrm{He}$	Δ	I.	$+\mathrm{He}$	Δ	I.	$+\mathrm{He}$	Δ
3547	3511	36	3707	3696	11	3632	3617	15	3719	3708	11
3180	3179	1	3631	3615	16	3223	3222	1	3634	3624	10
2744	2748	-4	3215	3215	0	3194	3193	1	3183	3182	1
2632	2640	-8	3211	3210	1	3152	3151	1	3129	3129	0
1480	1481	-1	3090	3090	0	3060	3060	0	3108	3108	0
1285	1292	-7	1676	1680	-4	3043	3042	1	3095	3096	-1
1234	1236	-2	1482	1483	-1	1504	1504	0	3038	3039	-1
1214	1220	-6	1478	1479	-1	1445	1446	-1	1654	1658	-4
1045	1053	-8	1466	1467	-1	1414	1414	0	1504	1505	-1
937	977	-40	1280	1282	-2	1362	1365	-3	1496	1496	0
973	938	35	1166	1167	-1	1301	1302	-1	1475	1476	-1
303	339	-36	928	938	-10	1262	1262	0	1420	1421	-1
			794	801	-7	1124	1129	-5	1399	1401	-2
			691	702	-11	1104	1104	0	1287	1288	-1
			229	261	-32	933	940	-7	1197	1200	-3
						848	852	-4	1140	1141	-1
						830	833	-3	953	954	-1
						480	485	-5	915	923	-8
						391	407	-16	823	824	-1
						280	283	-3	695	706	-11
						212	214	-2	632	640	-8
									365	370	-5
									257	258	-1
									185	223	-38

3 Comparison of different computational methods

Figure S8: Comparison of the calculated spectra of protonated methanol (33u), obtained by the different methods with experimental data recorded using IR-PD (He). In first and second panel blue colour corresponds to the bare ion, whereas cyan colour corresponds to the ion-He complex. Black colour in the last panel corresponds to the bare ion.

4 Experimental

4.1 Line profiles

Figure S9: He IR-PD band around 802 cm⁻¹ of protonated methanol (black points). Solid lines: leastsquare fit of a Doppler (red) and Lorentz (blue) broadened line shape. The line FWHM is approx 15 cm⁻¹ (from Doppler fit). Yellow line represents the approximate spectral width of FELIX laser at the given wavelength ($\sigma = 0.5\%\lambda$).

Figure S10: He IR-PD band around 1636 cm⁻¹ of protonated methanol (black points). Solid lines: leastsquare fit of a Doppler (red) and Lorentz (blue) broadened line shape. The line FWHM is approx 43 cm⁻¹ (from Lorentz fit). Yellow line represents the approximate spectral width of FELIX laser at the given wavelength ($\sigma = 0.5\%\lambda$).