
Supplementary Information: Can we use on-the-fly quantum simulations
to connect molecular structure and sunscreen action?

This document contains additional information relating to the simulations of MAA-like molecules performed in the
manuscript.

Active coordinate selection

Tables 1, 3, 5 and 7 contain the calculated gradients and non-adiabatic coupling terms for selected normal-modes
for each of the molecules 1a - 4a. Tables 2, 4, 6 and 8 contain the selected mode combinations used in increasingly
high-dimensional subsequent DD-MCTDH simulations for each molecule.

Mode α No. DVR Grad. (10−3 au) NACT (10−3 au)
39 0.01 11 3.4 -5.5
38 0.01 9 3.2 1.1
16 0.01 19 -2.6 -6.4
37 0.01 9 2.4 -1.4
29 0.01 7 -1.6 -1.4
6 0.01 21 1.5 -5.0
31 0.01 5 -1.4 -0.57
28 0.01 7 -1.3 0.50
2 0.01 7 0.17 10
11 0.01 11 1.3 -8.5
1 0.01 7 -0.13 5.9
9 0.01 5 -0.0043 5.6
8 0.01 21 -0.39 5.3

Table 1: Selected modes for molecule 1a.

No. of dimensions Mode combinations
6 {39,38}, {16,11}, {37,2}
8 {39,38}, {16,11,1}, {37,2}, {29}
10 {39,38,16}, {37,29,6}, {2,1}, {11,9}
12 {39,38,16}, {37,6}, {29,31}, {2,1}, {11,9,8}

Table 2: Mode combinations for molecule 1a

Mode α No. DVR Grad. (10−3 au) NACT (10−3 au)
34 0.02 15 5.5 1.6
36 0.01 19 3.9 -6.6
12 0.01 15 -2.9 -6.2
23 0.01 7 2.0 0.23
35 0.01 7 -2.0 -2.6
5 0.01 21 -1.9 4.9
11 0.01 11 -1.5 5.1
8 0.01 13 1.5 -6.9
9 0.01 13 1.5 0.65
4 0.04 31 -1.4 6.4
2 0.02 7 -0.023 -13
14 0.01 7 -0.51 -7.7
6 0.01 15 -0.50 -6.9
1 0.01 17 -0.47 -5.1

Table 3: Selected modes for molecule 2a.
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No. of dimensions Mode combinations
6 {34,12,23}, {36}, {2,14}
8 {34,35}, {36}, {12,23,8}, {2,14}
10 {34,12,23}, {36}, {35,5}, {2,14}, {8,6}
12 {34,12,23}, {36,11}, {35,5}, {2,14,8}, {6,4}
13 {34,12,23}, {36,35}, {5,4,9}, {11,14,1}, {2,8,6}

Table 4: Mode combinations for molecule 2a

Mode α No. DVR Grad. (10−3 au) NACT (10−3 au)
38 0.01 9 3.1 −1.6× 10−3

15 0.01 15 -2.3 1.2× 10−2

41 0.01 7 2.2 2.3× 10−2

37 0.01 7 -1.2 1.2× 10−2

9 0.01 11 -1.0 −2.5× 10−3

39 0.01 5 0.88 3.0× 10−5

20 0.01 7 -0.81 9.2× 10−3

40 0.01 9 −9.3× 10−4 -34
5 0.01 5 7.0× 10−4 15
35 0.01 5 −1.3× 10−4 -15
8 0.01 5 1.3× 10−4 14
29 0.01 5 3.3× 10−4 14
42 0.01 5 −2.5× 10−4 -12

Table 5: Selected modes for molecule 3a.

No. of dimensions Mode combinations
6 {38,15}, {41}, {37}, {40,5}
8 {38,15}, {41}, {37,9}, {40,5,35}
10 {38,15,41}, {37,9}, {39}, {40,5,35}, {8}
12 {38,15,41}, {37,9}, {39}, {20}, {40,5,35}, {8,29}

Table 6: Mode combinations for molecule 3a

Mode α No. DVR Grad. (10−3 au) NACT (10−3 au)
33 0.01 11 3.8 −1.3× 10−2

13 0.01 13 -1.6 −3.4× 10−2

10 0.01 11 1.3 0.11
21 0.01 7 -1.3 1.5× 10−2

19 0.01 5 0.93 1.0× 10−2

37 0.01 5 0.85 1.8× 10−2

6 0.01 9 -0.83 −5.6× 10−2

38 0.01 7 −1.4× 10−4 32
26 0.01 5 −1.5× 10−3 -13
39 0.01 5 −1.2× 10−3 11
5 0.01 5 2.1× 10−3 -11
48 0.04 5 1.6× 10−3 -9.5
1 0.01 11 1.9× 10−3 3.2
2 0.01 13 0.18 −8.9× 10−3

Table 7: Selected modes for molecule 4a.
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No. of dimensions Mode combinations
6 {33,21}, {13,10}, {38,26}
8 {33,2}, {13,10}, {21,1}, {38,26}
10 {33,37}, {13,10}, {21,19}, {38,39,5}, {26}
12 {33,37}, {13,10}, {21,19,2}, {38,39,5}, {26,1}
12 {33,37}, {13,10,6}, {38,39,48}, {21,19}, {26,5}
14 {33,37}, {13,10,6}, {38,39,48}, {21,19}, {26,5,1}, {2}

Table 8: Mode combinations for molecule 4a

Additional DD-MCTDH calculation results

For completeness, Figs. 1 - 4 give the absorption spectra and wavepacket time-correlation functions calculated for
molecules 3a and 4a, as determined using DD-MCTDH simulations.
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Figure 1: Absorption spectra of molecule 3a after vertical excitation to the S1 state, calculated using DD-MCTDH
with 6 normal modes chosen according to their gradients and non-adiabatic couplings at the Franck-Condon point.
The red, solid line is the result from a calculation with the PES being built on-the-fly whilst the green, dashed line
is the result from a second calculation using the pre-computed database to construct the PES.
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Figure 2: Diabatic state populations of molecule 3a after vertical excitation to the S1 state with the red, solid line
being the population of state S1 using a PES built on-the-fly and the green, dashed line that using a PES constructed
from a pre-computed database of energies, calculated using DD-MCTDH with 6 normal modes chosen according to
their gradients and non-adiabatic couplings at the Franck-Condon point.
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Figure 3: Absorption spectra of molecule 4a after vertical excitation to the S1 state. The red, solid line is the result
from a calculation with the PES being built on-the-fly whilst the green, dashed line is the result from a second
calculation using the pre-computed database to construct the PES, calculated using DD-MCTDH with 6 normal
modes chosen according to their gradients and non-adiabatic couplings at the Franck-Condon point.
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Figure 4: Diabatic state populations of molecule 4a after vertical excitation to the S1 state with the red, solid line
being the population of state S1 using a PES built on-the-fly and the green, dashed line that using a PES constructed
from a pre-computed database of energies, calculated using DD-MCTDH with 6 normal modes chosen according to
their gradients and non-adiabatic couplings at the Franck-Condon point.
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Figure 5: Absorption spectra of molecule 4a after vertical excitation to the S1 state, calculated using DD-MCTDH
with 6 normal modes, 5 chosen according to their gradients at the Franck-Condon point, the sixth and seventh
spanning the same space as those pointing between the FC point and (1) the conical intersection and (2) the first
step along the S1 geometry optimisation. The red, solid line is the result from a calculation with the PES being built
on-the-fly whilst the green, dashed line is the result from a second calculation using the pre-computed database to
construct the PES.
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Figure 6: Diabatic state populations of molecule 4a after vertical excitation to the S1 state with the red, solid line
being the population of state S1 using a PES built on-the-fly and the green, dashed line that using a PES constructed
from a pre-computed database of energies, calculated using DD-MCTDH with 6 normal modes, 5 chosen according
to their gradients at the Franck-Condon point, the sixth and seventh spanning the same space as those pointing
between the FC point and (1) the conical intersection and (2) the first step along the S1 geometry optimisation.
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Figure 7: Absorption spectra of molecule 4a after vertical excitation to the S1 state, calculated using DD-MCTDH
with 6 normal modes, 5 chosen according to their gradients at the Franck-Condon point, the sixth and seventh
spanning the same space as those pointing between the FC point and (1) the conical intersection and (2) the 17th
step along the S1 geometry optimisation. The red, solid line is the result from a calculation with the PES being built
on-the-fly whilst the green, dashed line is the result from a second calculation using the pre-computed database to
construct the PES.
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Figure 8: Diabatic state populations of molecule 4a after vertical excitation to the S1 state with the red, solid line
being the population of state S1 using a PES built on-the-fly and the green, dashed line that using a PES constructed
from a pre-computed database of energies, calculated using DD-MCTDH with 6 normal modes, 5 chosen according
to their gradients at the Franck-Condon point, the sixth and seventh spanning the same space as those pointing
between the FC point and (1) the conical intersection and (2) the 17th step along the S1 geometry optimisation.

Procedure for determining pseudo normal-mode coordinates

In the main text, we noted that we had generated additional pseudo normal-mode coordinates which could be added
to the standard normal-mode coordinate set in order to (potentially) improve the description of the dynamics. The
procedure used to generate these additional normal-modes was as follows:

1. Let ~x0 be the reference geometry and ~c0 its centre of mass, in mass weighted cartesian coordinates.

2. Select the nV vectors that we are interested in describing, eg. minima, CI, some geometry along the reaction
coordinate, etc. Even more useful, one could use the principal components obtained from the covariance matrix
of some large collection of vectors describing dynamics from a few surface hopping trajectories.

3. Let the matrix of these vectors in weighted cartesian coordinates be V (dimensions nV × n). Note that the
centre of mass of these vectors has to be made to equal ~c0.

4. Let the orthogonal projection operator that projects onto the space of these important vectors be Pi =
V((V)TV)−1VT (note Pi = (Pi)T ). It is worth noting that orthogonal projection operators leave the vectors
acted on as close as possible to the original ones, within the space of projection.

5. Let N be the (n− 6)× n matrix of eigenvectors of the Hessian matrix in the basis of mass weighted cartesian
coordinates (i.e normal modes). We will partition the columns of N into two submatrices N = Nt||Nu. The set
of modes we wish to leave untouched is Nu; these could be important to include during the dynamics, or high
frequency modes that we might wish to also omit altogether. The set of ”touchable” modes Nt are the ones
we will use to construct better coordinates for the problem under consideration. Important vectors in V will
typically be constituted of many small displacements along these, so our final aim is to create new coordinates
that turn these small displacements into a fewer, more manageable and succinct set of coordinates. It can
be shown that the kinetic energy (KE) operator of the mass weighted cartesian coordinates is invariant with
respect to orthogonal transformations. If we use orthogonal transformations to mix these touchable modes into
the more succinct representation, we shall have gain the added bonus of not worrying about the form of the
KE; this is our aim here.
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6. Let the orthogonal projection operator of the touchable modes be Pt = Nt((Nt)TNt)−1(Nt)T (note Pt =
(Pt)T ). We can construct the covariant matrix of touchable modes within the space of vectors V. Its given by

Pit = PiPt

G = (PitN)T (PitN)
(1)

The eigendecomposition of G, a symmetric matrix, gives a set of orthogonal eigenvectors.

UTGU = DTD = (PitNU)T (PitNU) = Λ (2)

Note that the dimensions of U are (n−6)× (n−6). D is a (n−6)×n matrix or orthogonal vectors, within the
space of vectors V. The resulting ns significant eigenvalues (λi > δ, δ typically less than 1.0) are an indication
of how many linearly independent vectors exist in the space of vectors V, which, if there are many of them,
may be fewer than nV . A typical eigenvalue decomposition algorithm will sort these out in some order, here
we shall assume descending order λi > λi+1.

7. The first ns vectors in D will therefore contain the principal components of the space of vectors in V. The
set of orthogonal eigenvectors U can be applied to mix (in a orthogonal transformation sense) the touchable
normal modes to generate a new set of orthogonal vectors NU. Similarly to D, the top ns vectors have the
property of maximising the overlap with the space of vectors in V. This can be demostrated by considering
the product (NU)TD

(NU)TD =

(PitNU + (1 −Pit)NU)TD =

(D + (1 −Pit)NU)TD =

(Λ− (DTP(1 −Pit)NU)T = Λ− 0

(3)

Note that PD = D. Where the first ns vectors in NU, with significant λi maximuse the overlap within the
space of V.

8. Let the matrix of the first ns (significant) vectors in NU be Ns. We could finally rotate this subspace of
coordinates Ns to make them resemble as much as possible normal modes. This can be achieved by first
transforming to a normal mode basis: NsNT and we can then inspect which is the largest normal coordinate
making up each vector in Ns.

9. Let the matrix of selected normal mode vectors with biggest contribution (absolute coefficient), one for each of
the ns vectors in Ns, be NSel. The orthogonal transformation matrix O that will make Ns resemble as much
as possible NSel, is given by the procrustres problem (since the space of vectors in Ns and NSel are not the
same):

AT sB = (Ns)TNSel

O = ATB
(4)

Where the first line is the SVD decomposition of (Ns)TNSel. The final set of coordinates in mass weighted
cartesian bases is given by F = ONs. given that we arrived at F by solely rotations of normal coordinates,
the KE operator remains invariant. F has the property of most succinctly describing the space of vectors in V
while remaining orthogonal to Nu, the untouchable normal modes.

10. Finally, we can estimate the frequency of the new coordinates by averaging over the frequencies of the normal
modes making up each coordinate in F, these are given by the first ns diagonal elements of FTNΩNTF, where
Ω is the Hessian eigenvalue matrix.
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