Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Metabolome and Gut Microbiota Variations of Long-term Intake of Panax Ginseng Extracts on Rats

Yifan Sun^{a†}, Shaoqiu Chen^{b†}, Runming Wei^{b†}, Xie Xie^a, Chongchong Wang^a, Shihao Fan^c, Xia Zhang^a,

Juan Su^c, Jiajian Liu^d, Wei Jia^{abd*}and Xiaoyan Wang^{a*}

†These authors contributed equally to this work.

Xiaoyan Wang at Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China. Phone: 86-21-34207343; Fax: 86-21-34206059; E-mail: cathywxy@sjtu.edu.cn

Wei Jia at Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China. Phone: 86-21-34207343; Fax: 86-21-34206059; E-mail: weijia@sjtu.edu.cn

Table of contents

Supplementary Figures

Fig.S1 PLS-DA scores plot based on the cecum, ileum, serum metabolic profiling of administration of GS group compared with C group.

Fig.S2 Person correlation analysis of cecum microbiota and metabolites

Fig.S3 Person correlation analysis of ileum microbiota and metabolites

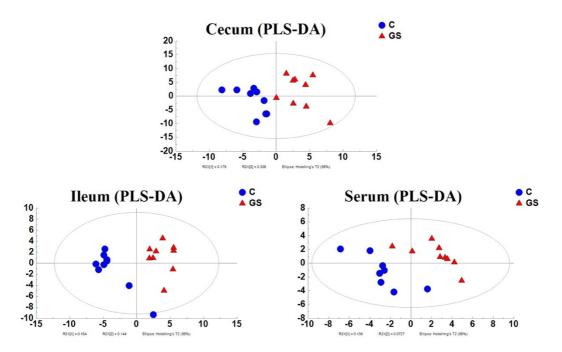
Supplementary Tables

Table S1. Differential cecum metabolites to be accountable for the separation between administration of GS group and C group

Table S2. Differential ileum metabolites to be accountable for the separation between administration of GS group and C group

Table S3. Differential serum metabolites to be accountable for the separation between administration of GS group and C group

^{*} To whom correspondence should be addressed;


^{a.} Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

^{b.} University of Hawaii Cancer Center, Honolulu 96813, USA


 $^{^{\}rm c}\,$ College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China

d. Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China

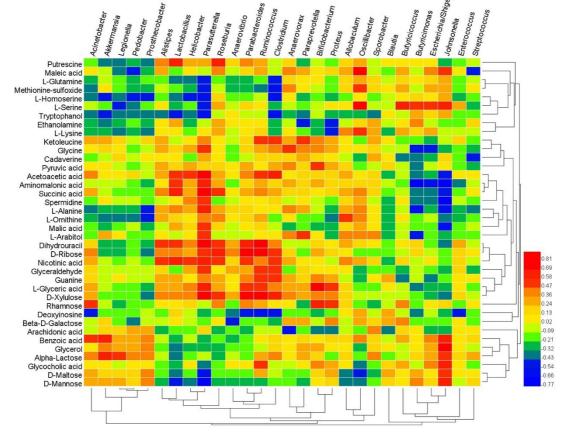

Supplementary Figures

Fig.S1 PLS-DA scores plot based on the cecum, ileum, serum metabolic profiling of administration of GS group compared with C group. cecum (R2X= 0.642, Q2 = 0.663), ileum (R 2 X= 0.674, R 2 Y = 0.975, Q 2 = 0.528), serum (R 2 X=0.317, R 2 Y = 0.935, Q 2 = -0.0224)

Fig.S2 Spearman correlation coefficient analysis of cecum microbiota and metabolites **Note.** The Spearman correlation coefficient was calculated by R. The value > 0 indicating positive correlations between gut microbiota and metabolites, while value < 0 indicating negative correlations.

Fig.S3 Spearman correlation coefficient analysis of ileum microbiota and metabolites **Note.** The Spearman correlation coefficient was calculated by R. The value > 0 indicating positive correlations between gut microbiota and metabolites, while value < 0 indicating negative correlations.

Supplementary Tables

Table S1. Differential cecum metabolites to be accountable for the separation between administration of GS group and C group

	administration of d5 group and c group								
No.	Metabolites	FCª	P	VIPb					
			(t test)						
1	Glycerol	0.51	0.003	2.02					
2	L-Alanine	1.61	0.005	1.98					
3	Hypotaurine	9.58	0.012	1.84					
4	L-Homoserine	0.63	0.006	2.06					
5	Pyroglutamic acid	1.76	0.048	1.17					
6	L-Ornithine	1.36	0.027	1.50					
7	D-Galactose	0.23	0.002	2.05					
8	D-Glucuronic acid	0.58	0.003	2.01					
9	5-Keto-D-gluconate	0.34	0.003	1.84					
10	Linoelaidic acid	0.55	0.002	1.87					
11	Stearic acid	1.47	0.022	1.56					
12	Oleic acid	0.58	0.007	1.61					
13	Palmitelaidic acid	0.53	0.003	1.67					
14	Aminomalonic acid	1.77	0.001	2.35					
15	Nicotinic acid	1.24	0.034	1.19					
16	Lactobionic acid	6.93	0.030	1.43					
17	Dimethylmalonic acid	0.77	0.013	1.06					
18	Ribonic acid	0.56	0.005	1.86					
19	Threonic acid	0.69	0.014	1.95					
20	Uridine	0.54	0.025	1.59					
21	D-Xylitol	0.56	0.018 1.65						
22	Glycyl-glycine	0.54	0.033	1.35					
22	Cholesterol	2.24	0.015	1.79					

^aFold change was obtained by calculating the relative concentration between administration of GS group compared with Control Group. ^bVariable importance in the projection (VIP) was obtained from PLS-DA with a threshold of 1.0.

Table S2. Differential ileum metabolites to be accountable for the separation between administration of GS group and C group

administration of GS group and C group								
No.	Metabolites	FC ^a	P	VIPb				
		10	(t test)	VIF				
1	Glycerol	0.62	0.030	1.57				
2	L-Arabitol	1.86	0.009	1.30				
3	Ethanolamine	2.07	0.083	1.16				
4	Putrescine	1.45	0.075	1.28				
5	Cadaverine	4.82	0.078	1.14				
6	Spermidine	3.85	0.010	1.61				
7	L-Alanine	3.08	0.002	2.07				
8	Glutamine	0.63	0.077	1.28				
9	L-Glycine	2.92	0.018	1.53				
10	Homoserine	0.56	0.031	1.48				
11	L-Lysine	1.32	0.102	1.09				
12	L-Ornithine	2.55	0.032	1.62				
13	Glyceraldehyde	3.89	0.066	1.20				
14	D-Maltose	0.22	0.004	2.03				
15	Beta-D-Galactose	0.38	0.076	1.14				
16	D-Ribose	1.46	0.118	1.05				
17	Rhamnose	1.74	0.067	1.06				
18	Alpha-Lactose	0.73	0.058	1.00				
19	D-Xylulose	3.06	0.043	1.38				
20	Arachidonic acid	2.87	0.023	1.45				
21	Ketoleucine	2.72	0.099	1.07				
22	Acetoacetic acid	2.51	0.002	2.10				
23	Aminomalonic acid	4.60	0.004	1.97				
24	Succinic acid	2.06	0.011	1.67				
25	Glycocholic acid	0.62	0.008	1.67				
26	L-Glyceric acid	2.99	0.018	1.53				
27	Malic acid	2.42	0.022	1.61				
28	Nicotinic acid	1.40	0.052	1.30				
29	Pyruvic acid	2.55	0.078	1.10				
30	Deoxyinosine	5.56	0.056	1.26				
31	Dihydrouracil	1.94	0.033	1.57				
32	Guanine	1.75	0.104	1.06				
33	Methionine	0.52	0.058	1.22				
	sulfoxide	U.5Z	0.036	1.22				

^aFold change was obtained by calculating the relative concentration between administration of GS group compared with Control Group. ^bVariable importance in the projection (VIP) was obtained from PLS-DA with a threshold of 1.0.

Table S3. Differential serum metabolites to be accountable for the separation between administration of GS group and C group

No.	Metabolites	FC ^a	Р	VIPb		
			(t test)			
1	Glycerol	0.74	0.025	1.69		
2	L-Threitol	1.36	0.034	1.54		
3	L-Threonine	0.79	0.007	2.22		
4	Docosahexaenoic acid (DHA)	0.55	0.010	2.12		
5	Conjugated linoleic acid (CLA)	0.76	0.020	1.76		
6	Eicosapentaenoic acid (EPA)	0.61	0.007	2.08		
7	Elaidic acid	0.75	0.043	1.62		
8	4-Deoxyerythronic acid	0.68	0.048	1.53		
9	2-Ethylhydracrylic acid	1.48	0.016	1.86		
10	Lactic acid	0.65	0.024	1.39		
11	Glycerol phosphate calcium salt	0.71	0.020	1.83		
12	Oleamide	1.94	0.006	1.54		
13	4-Hydroxyproline	0.72	0.050	1.80		
14	Cholesterol	0.57	0.040	1.71		

^aFold change was obtained by calculating the relative concentration between administration of GS group compared with Control Group. ^bVariable importance in the projection (VIP) was obtained from PLS-DA with a threshold of 1.0.