Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Ultrasmall fluorescent nanoparticles derived from roast duck: their physicochemical characteristics and interaction with human serum albumin

Shuang Cong, a, b Jingran Bi, a, b Xunyu Song, a, b Chenxu Yu, a, c Mingqian Tana, b,*

^a School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China

^b Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, Liaoning, China

^c Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA

*Corresponding author (Tel & Fax: +86-411-86318657, E-mail: 2468750030@gq.com, ORCID: 0000000275350035)

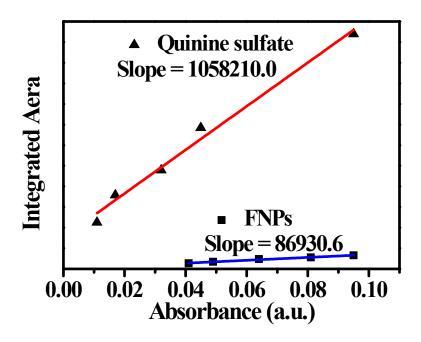


Fig. S1 Fluorescence quantum yield of FNPs from roast duck.

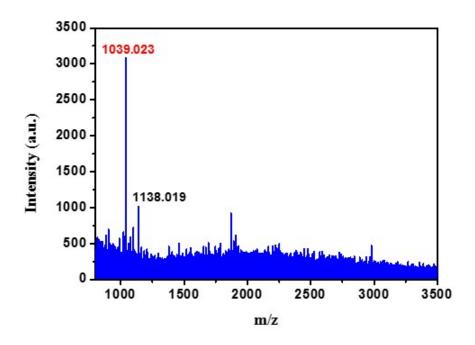


Fig. S2 MALDI-TOF-MS spectrum of FNPs from roast duck.

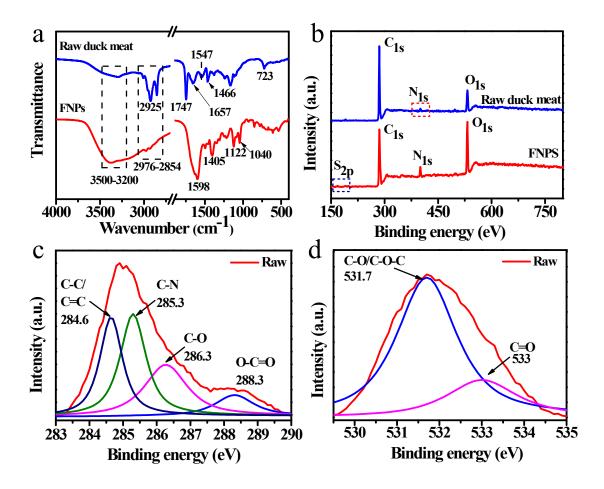


Fig. S3 (a) FT-IR and (b) XPS spectra of FNPs and raw duck meat without roasting. (c) High resolution peaks of C_{1s} and (d) O_{1s} for FNPs.

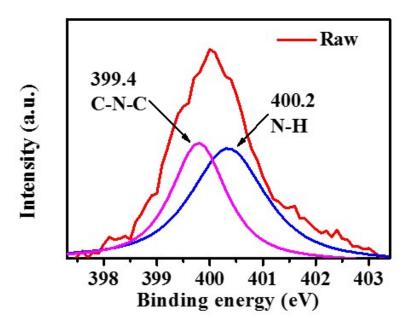


Fig. S4 High resolution spectra of N_{1s} peak for FNPs from roast duck.

Table S1 Element contents of raw duck meat and FNPs

Elements	Raw duck meat (%)	FNPs (%)
С	84.03	70.48
N	2.48	6.25
О	13.49	22.17
S	N.D.	1.11

N.D.: not detected.