ELETRONIC SUPPLEMENTARY INFORMATION (ESI)

Phase behavior of cholesterol in mixtures with hipo- and hipercholesterolemic lipids

Eduardo de S. Esperança¹; Mariane S. Bonatto¹; Gustavo G. Shimamoto²; Matthieu Tubino²; Mariana C. Costa³; Antonio J. A. Meirelles¹, Guilherme J. Maximo¹

¹School of Food Engineering, University of Campinas, Campinas, Brazil. ² Chemical Institute, University of Campinas, Campinas, Brazil. ³ School of Chemical Engineering, University of

Campinas, Campinas, Brazil

Figure S1. DSC thermograms for cholesterol (A), octacosanol (B) and α -tocopherol (C)

Equation S1 shows the Margules 3-suffixes equation for the calculation of the activity coefficient γ of the compounds in a binary system *i* + *j* with molar fraction x_i and x_j . A_{ij} and B_{ij} are the adjustable parameters (REID *et al.*, 1987).

$\left(u = 0 v n \right)$	$\left[\left(A_{ij}+3B_{ij}\right)x_j^2-4B_{ij}x_j^3\right]$)
$ \gamma_i - \exp $	RT	
$\left u - ovn \right $	$\left[\left(A_{ij}+3B_{ij}\right)x_i^2-4B_{ij}x_i^3\right]$	
$\left(\gamma_{j} - \exp\right)$	RT	J

Equation S1

Figure S2. DSC thermograms (heating) for cholesterol (1) + oleic acid (2). From top to bottom $x_1 = 0.1$; 0.2; 0.3; 0.4; 0.6; 0.7; 0.8; 0.9. Magnification of the higher thermal transition (melting temperature) for some mixtures.

Figure S3. DSC thermograms (heating) for cholesterol (1) + octacosanol (2) mixtures. From top to bottom $x_1 = 0.0$; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9.

Figure S4. DSC thermograms (heating) for cholesterol (1) + stearic acid (2). From top to bottom x_1 = 0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.7; 0.8; 0.9

Figure S5. DSC thermograms (heating) for cholesterol (1) + elaidic acid (2). From top to bottom $x_1 = 0.0; 0.1; 0.2; 0.3; 0.5; 0.6; 0.7; 0.8; 0.9$

Compound	T _{fus} (K)	∆H _{fus} (J/mol)	Reference
Cholesterol	421.7	28500	(CHEN et al., 2009)
	422.3	28400	(MILTENBURG et al., 1998)
	420.2	27410	(DOMALSKI e HEARING, 1996)
	421.15	-	(DOMAŃSKA <i>et al.</i> , 1994)
Oleic Acid	289.45	-	(MOD <i>et al.</i> , 1960)
	286.5	39600	(DOMALSKI e HEARING, 1996)
Stearic Acid	342.75	61300	(SATO <i>et al.</i> , 1990)
	338.3	60400	(MOORE <i>et al.</i> , 2007)
	342.8	63200	(MORENO <i>et al.</i> , 2007)
	344.1	57800	(TEIXEIRA <i>et al.</i> , 2006)
Elaidic Acid	317.6	61550	(DOMALSKI e HEARING, 1996)
	317.2	-	(ALVIK <i>et al.</i> , 1972)

Table S1. Melting temperatures T_{fus} and enthalpies ΔH_{fus} for pure cholesterol and fatty acids.

 Table S2.
 Solid-liquid equilibrium data for cholesterol (1) + oleic acid (2).

T _{eut}	\mathbf{T}_{fus}
280.19	-
278.57	341.45
278.66	359.00
278.10	379.65
278.72	393.85
277.89	404.55
277.78	408.55
277.03	412.05
-	412.00
	T eut 280.19 278.57 278.66 278.10 278.72 277.89 277.78 277.03

X	T _{eut}	T _{fus}
0.099	329.10	355.00
0.181	343.36	353.00
0.304	349.82	364.50
0.382	348.53	384.62
0.466	348.83	390.00
0.612	348.09	396.00
0.687	347.74	402.00
0.787	345.32	411.00
0.886	345.04	413.00

 Table S3. Solid-liquid equilibrium data for cholesterol (1) + octacosanol (2).

Table S4. Solid-liquid equilibrium data for cholesterol (1) + α -tocopherol (2).

X	T _{fus}
0.10	281.80
0.30	355.00
0.50	386.00
0.70	397.76
0.80	407.12
0.90	409.54

Table S5. Solid-liquid equilibrium data for cholesterol (1) + stearic acid (2)

X	T _{eut}	T_{fus}
0.102	337.43	343.85
0.199	336.61	343.45
0.297	334.22	340.45
0.405	332.36	372.95
0.499	331.65	388.00
0.604	-	392.05
0.702	327.94	398.65
0.801	326.60	407.75
0.902	320.53	410.65

x	T _{eut}	T_{fus}
0.100	312.75	315.75
0.200	312.95	334.75
0.300	311.75	363.25
0.400	308.59	370.05
0.500	311.04	388.45
0.600	310.05	389.73
0.699	309.66	404.85
0.800	307.49	407.95
0.899	-	410.36

Table S6. Solid-liquid equilibrium data for cholesterol (1) + elaidic acid (2)

REFERENCES

- ALVIK, T.; BORGEN, G.; DALE, J. Conformational studies of normal, medium and large ring diametric cycloalkanediones and their ethylene ketal derivatives. Acta Chem Scand, v. 26, p. 1805-16, 1972.
- CHEN, W.; SU, B.; XING, H.; YANG, Y.; REN, Q. Solubilities of cholesterol and desmosterol in binary solvent mixtures of n-hexane+ethanol. Fluid Phase Equilibria, v. 287, n. 1, p. 1-6, 2009.
- DOMALSKI, E. S.; HEARING, E. D. Heat capacities and entropies of organic compounds in the condensed phase, vol 3. Journal of Physical and Chemical Reference Data, v. 25, n. 1, p. 1-525, 1996.
- DOMAŃSKA, U.; KLOFUTAR, C.; PALJK, Š. Solubility of cholesterol in selected organic solvents. Fluid Phase Equilibria, v. 97, p. 191-200, 1994.
- MILTENBURG, J. C. V.; GENDEREN, A. C. G. V.; DEN BERG, G. J. K. V. Design improvements in adiabatic calorimetry: The heat capacity of cholesterol between 10 and 425 K. Thermochimica Acta, v. 319, n. 1, p. 151-162, 1998.
- MOD, R.; MAGNE, F.; SKAU, E. Pure Acid-Free Amides of C18 Fatty Acids. Journal of Chemical and Engineering Data, v. 5, n. 4, p. 478-479, 1960.
- MOORE, D. J.; KOELMEL, D.; LAURA, D.; BEDFORD, E. Infrared spectroscopy and differential scanning calorimetry studies of binary combinations of cis-6-octadecenoic acid and octadecanoic acid. **Chemistry and Physics of Lipids,** v. 150, n. 1, p. 109-115, 2007.
- MORENO, E.; CORDOBILLA, R.; CALVET, T.; CUEVAS-DIARTE, M. A.; GBABODE, G.; NEGRIER, P.; MONDIEIG, D.; OONK, H. A. J. Polymorphism of even saturated carboxylic acids from n-decanoic to neicosanoic acid. New Journal of Chemistry, v. 31, n. 6, p. 947-957, 2007.
- REID, R. C.; PRAUSNITZ, J. M.; POULING, B. E. The properties of gases and liquids. 4th. New York: McGraw-Hill, 1987.
- SATO, K.; YOSHIMOTO, N.; SUZUKI, M.; KOBAYASHI, M.; KANEKO, F. Structure and transformation in polymorphism of petroselinic acid (cis-.omega.-12-octadecenoic acid). The Journal of Physical Chemistry, v. 94, n. 7, p. 3180-3185, 1990.
- TEIXEIRA, A. C. T.; GONÇALVES DA SILVA, A. M. P. S.; FERNANDES, A. C. Phase behaviour of stearic acid–stearonitrile mixtures: A thermodynamic study in bulk and at the air–water interface. Chemistry and Physics of Lipids, v. 144, n. 2, p. 160-171, 2006.