SAXS Characterization of the Interactions among Digested Food Compounds and the Anti-Oxidant and Anti-Inflammatory Activities of the Formed Nanocomplexes Yingkang Yang^{†a}, Xiaoqi Wang^{†b}, Guijie Chen^a, Wenhua Zhou^c, Xiaoxiong Zeng^a,

Bing Hu^{a*}, Yunqi Li^{d*}, Qingrong Huang^{b*}

^aCollege of Food Science and Technology, Nanjing Agricultural University, Nanjing

210095, Jiangsu, China

^bDepartment of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA

^cHunan Key Laboratory of Processed Food for Special Medical Purpose, Central

South University of Forestry and Technology, Changsha, 410004, Hunan, China

^dKey Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun, 130022, P. R. China.

*To whom correspondence should be addressed.

Email: <u>hubing212002@njau.edu.cn</u>; <u>yunqi@ciac.ac.cn</u>; qhuang@aesop.rutgers.edu *Contribute equally

Fig. S1 Zeta potential of the chitosan (CS)/caseinophosphopeptide (CPP) nanocomplexes with increasing CS/CPP mass ratios at pH 6.2.

Fig. S2 Characteristics of the EGCG associating CS-CPP nanocomplexes: (a) TEM image of the nanocomplexes; (b) particle size distribution; (c) zeta potential distribution.