Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2018

ELECTRONIC SUPPLEMENTARY INFORMATION

Table S1. Composition of dried grape pomace used in the clinical trial with subjects at high cardiometabolic risk

Component	Content (%)		
Proximal composition			
Carbohydrates			
Simple sugars	2.49 ± 0.12		
Soluble dietary fiber	2.58 ± 0.02		
Insoluble dietary fiber	65.65 ± 2.08		
Protein	11.57 ± 0.34		
Fat	10.35 ± 0.21		
Ash	5.75 ± 0.21		
Humidity	1.71 ± 0.08		
Caloric value (kcal/g)	2.85		
Polyphenol composition			
Extractable polyphenols	6.22 ± 0.17		
Non-extractable polyphenols ¹	23.44 ± 1.16		
Total polyphenols	29.63 <u>+</u> 1.18		

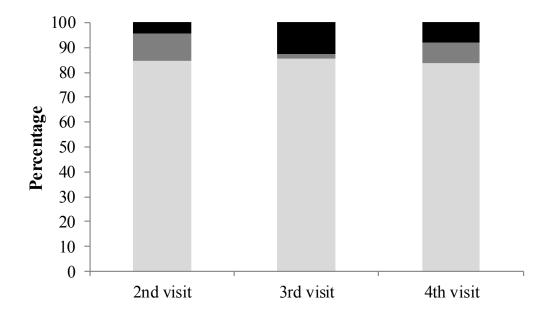
¹ A fraction is included in dietary fiber.

Data are presented as mean \pm standard deviation. The dose used in the study was 8 g. The composition of the dietary supplement was determined by standard methodologies: dietary fiber, by the indigestible fraction method¹; soluble sugars, by the dinitrosalicylic method² after extraction with ethanol/water (80:20, v/v); fat, using a Soxhlet System HT extractor with petroleum ether; and protein, using an FP-2000® (Dumas Leco Corp., St. Joseph, MI, USA) automated nitrogen analyzer. The polyphenol composition was determined as extractable polyphenols (EEP) and non-extractable polyphenols, divided into hydrolyzable polyphenols (HPP) and non-extractable proanthocyanidins (NEPA)³-5.

- 1. I. Goñi, M. E. Díaz-Rubio, J. Pérez-Jiménez and F. Saura-Calixto. Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. *Food Res Intl*, **2009**, 42, 840-846.
- **2**. H. N. Englyst and J. H. Cummings. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods. *J. AOAC*, **1988**, 71, 808-814.
- **3**. P. W. Hartzfeld, R. Forkner, M. D. Hunter and A. E. Hagerman. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. *J. Agric. Food Chem.*, **2002**, 50, 1785-1790.
- **4**. J. Pérez-Jiménez, S. Arranz, M. Tabernero, M. E. Díaz-Rubio, J. Serrano, I. Goñi and F. Saura-Calixto. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. *Food Res. Int.*, **2008**, 41, 274-285.
- **5**. J. Zurita, M. E. Díaz-Rubio and F. Saura-Calixto. Improved procedure to determine non-extractable polymeric proanthocyanidins in plant foods. *Int. J. Food Sci. Nutr.*, **2012**, 63, 936-39.

Table S2. Characteristics of the diet followed by subjects at high cardiometabolic risk participating in a clinical trial with grape pomace. Data are represented as mean with their standard errors.

Parameter	Pre-study		Control period		Supplementation period*	
	Mean	SEM	Mean	SEM	Mean	SEM
Energy (kcal)	1,877	92	1,870	87	1,862 1	71
Protein (g)	80	4	86	4	79	3
Carbohydrates (g)	188	10	188	9	185	8
Dietary fibre (g)	24	2	24	2	21	1
Lipids (g)	81	5	89	5	78	4
Cholesterol (mg)	289	17	313	17	274	15
Saturated fatty acids (g)	27	2	31	2	25	1
Monounsaturated fatty acids (g)	34	2	36	2	33	2
Polyunsaturated fatty acids (g)	12	1	12	1	11	1
Minerals (mg)						
Calcium	775	50	824	47	768	49
Iron	14	1	14	1	13	1
Sodium	2,043	151	2,060	136	2,278	131
Vitamins						
Vitamin A (µg)	800	7	908	66	838	56
Vitamin B1 (mg)	1.5	0.1	1.6	0.1	1.4	0.1
Vitamin B2 (mg)	1.7	0.1	1.7	0.1	1.6	0.1
Vitamin B9 (µg)	268	18	270	16	240	14
Vitamin C (mg)	135	14	134	12	116	9


^{*} Excluding the specific contribution of grape pomace to the intake of macro and micronutrients (see Table S1).

Data from three telephone 24 h dietary recalls for each period. The number of subjects is different for each period (n= 45 for the pre-study period, n=48 for the control period and the supplementation period), due to problems to contact some of them.

No significant differences (p < 0.05) were found between treatments (one-way ANOVA).

Table S3. Modification in physical activity of subjects at high cardiometabolic risk during clinical trial with grape pomace supplementation.

Data are referred to the previous visit. Light grey, no modification; dark grey, increase; black, decrease.

