Cashew apple fiber prevents high fat diet-induced obesity in mice: a NMR metabolomic evaluation

Diana V. Carvalho¹, Lorena Mara A. Silva², Elenilson G. Alves Filho², Flávia A. Santos¹, Renan P. de Lima¹, Ana Flávia S. C. Viana¹, Paulo Iury G. Nunes, Said G. C. Fonseca¹, Tiago S. de Melo³, Daniel A. Viana⁴, Maria I. Gallão¹, Edy S. de Brito^{2*}

¹ Universidade Federal do Ceará, Fortaleza, CE, Brazil.

² EMBRAPA Agroindústria Tropical, Fortaleza, CE, Brazil.

³ Instituto Superior de Teologia Aplicada, Sobral, CE, Brazil.

⁴ Pathovet Anatomia Patológica e Patologia Clínica Veterinária, Fortaleza, CE, Brazil.

* Corresponding author E-mail: edy.brito@embrapa.br Phone: 55 85 3391-7393

1. Experimental

The chow used in this study consisted in: moisture (maximum) 12 g.100 g⁻¹; crude protein (minimum) 22 g.100 g⁻¹; ethereal extract (minimum) 5 g.100 g⁻¹; mineral content (maximum) 10 g.100 g⁻¹; fibrous content (maximum) 8 g.100 g⁻¹; and energy content of 3.25 kcal.g⁻¹. In addition, the centesimal composition of HFD and HFD-CABwc are shown in Supplementary Table S1

Table S1. Centesimal composition (%) for cashew fiber without low molecular weight compounds (CABw), high fat diet (HFD) and high fat diet supplemented cashew fiber without low molecular weight compounds (HFD-CABwc): humidity; lipids; protein; ash; total carbohydrates; energy value (kcal/100 g); fiber content.

Samples	Humidity	Lipids	Protein	Ash	Carbohydrates	Energy	Fiber
CABw	14,14	0,71	13,25	1,09	70,81	342,63	11,64
HFD	4.57	24.03	17.36	4.17	49.85	485.29	2.95
			- /				_,, ,
HFD-	4 53	23 94	17 15	3 50	50.88	487 58	4 00
CABwc			1,.10	2.20	2 3.00		

2. NMR data from the identification of the organic compounds

Tables S2 and S3 show the structures, ¹H and ¹³C chemical shifts (δ), multiplicity, correlations, and constant coupling (*J* in HZ) of the compounds identified in the serum and feces, respectively. The identified compounds exhibit characteristics signals at aliphatic region (between δ 0.66 to 2.60) from aliphatic alicyclic, allylic, β -substituted aliphatic, and alkyne protons; carbinolic region (between δ 2.60 to 5.50) from olefinic, α -monosubstituted and α -disubstituted aliphatic protons; and aromatic region (between δ 6.80 to 9.22) from alkene, heteroaromatic and aldehydic protons ¹⁻⁸.

Table S2. Organic compounds identified in the mice serum samples.

Churrada ana a	$\delta^{I}H$	$\delta^{I3}C$	$\delta^{I}H$	$\delta^{I3}C$
Structures	(multip.*J in Hz)	(HSQC)	ref.	ref.

AMINO ACIDS					
$HO \xrightarrow{O}_{1} \xrightarrow{3}_{CH_{3}}$	2 -3.80 (o) 3 - 1.49 (<i>d</i> 7.2)	no 19.2	3.90 (q 7.3) 1.52 (d 7.3)	53.4 19.1	
$HO \xrightarrow{Valine}_{HO} CH_3 CH_3 CH_3$	2 - 3.62 (o) 3 - 2.28 (o) 4 - 0.98 (d 7.2) 5 - 1.05 (d 7.2)	0 0 19,3 20,8	3.82 (<i>d</i> 4.4) 2.33 (<i>m</i>) 1.02 (<i>d</i> 7.1) 1.06 (<i>d</i> 7.1)	n 32.0 19.1 20.9	
Leucine HO 1 2 3 4 5 CH ₃ NH ₂ 5 CH ₃	2,3,4 - no 5,6 - 0.97 (<i>d</i> 6.0)	no 42.7 23.4 24.7	3.90 (no) 1.73 (<i>m</i>) 0.96 (<i>dt</i>)	n 42.8 23.9 27.0	
Isoleucine $HO + CH_3 + CH_3 + CH_3$ $HO + CH_3 + CH_3$ $HO + CH_3 + CH_3$	2 - no 3 - 1.80 (o) 4 - 1.48 (o) 5 - 1.02 (o) 6 - 1.02 (o)	0 37.0 27.7 16.0 17.5	3.65 (<i>n</i>) 1.96 (<i>m</i>) 1.45 (<i>m</i>) 0.92 (<i>d</i> 7.1) 0.99 (<i>d</i> 7.1)	62.5 38.7 27.0 13.9 17.4	
$Glutamine$ H_2N H_2N H_2N H_2 H_2 H_2	4 - 2.30 a 2.47 (<i>m</i>) 3 - 2.00 a 2.14 (<i>m</i>) 2 - 3.73 (o)	34.1 30.0 57.6	3.77 (o) 2.12 (m) 2.45 (m)	57.2 29.3 33.9	
Lactic	ORGANIC ACH 2 - 4.11 (q 7.20) 3 - 1.33 (d 7.20)	71.9 22.9	4.10 (q 6.93) 1.32 (d 6.93)	71.4 22.9	

$HO $ $1 $ CH_3 CH_3 OH				
3-hydroxybutyric O OH	5 - 1.20 (o) 3 - 2.31 (m)	24.6 49.4	1.18 (d 6.26) 2.29 (m)	24.4 49.2
HO 2, 3 5 4 CH ₃	2 - 2.40 (<i>m</i>) 4 - 4.15 (o)	49.4 68.7	2.39 (<i>m</i>) 4.14 (<i>m</i>)	49.2 68.5
Acetic $HO^{-1}CH_{3}$	2 - 1.92 (s)	26.3	1.90 (s)	26.1
Formic H-1 OH	1 - 8.46 (<i>s</i>)	no	8.46 (s)	173.9
	CARBOHYDRAT	TES		I
HO =	1 - 5.23 (<i>d</i> 3.8) 2 - 3.47 (m) 3 - 3.77 (m) 4 - 3.56 (m) 5 - 3.72 (m) 6 - 3.85 (m)	95.0 72.3 75.6 74.0 63.9 75.5	5.25 (d 3.80) 3.89-3.36 (o) n n n n	95.4 72.2 76.0 72.8 64.2 74.5
β -glucose H OH H OH H OH HO HO 3 H OH H OH H	1 - 4.65 (<i>d</i> 7.90) 2 - 3.26 (m) 3 - 3.75 (m) 4 - 3.48 (m) 5 - 3.41 (m) 6 - 3.90 (m)	98.6 77.5 63.6 78.8 72.2 63.7	4.66 (<i>d</i> 8.10) 3.25 (<i>t</i> 8.40) n n n n	99.2 77.6 56.1 79.0 72.8 63.1

OTHER COMPOUNDS					
Ethanol	1 - 3.66 (o)	60.3	3.64 (o)	60.3	
H ₃ C ² OH	2 - 1.19 (o)	19.6	1.17 (o)	19.6	
$HO \xrightarrow{1}{2} Choline$	3 - 3.22 (o)	56.8	3.19 (s)	56.7	
	2 - 3.52 (o)	70.4	3.50 (dd 5.8; 4.2)	70.1	
	1 - 4.07 (o)	58.8	4.05 (m)	58.5	
$Creatine \\ H_2 N \qquad NH \qquad 1 \\ H_2 N \qquad NH \qquad 1 \\ H_2 H_3 \qquad OH \qquad OH$	2 - 3.04 (s)	39.8	3.03 (s)	39.5	
	1 - 3.93 (o)	56.6	3.92 (s)	56.4	
Fatty acids LDL and VDL ⁷ $H_{3}C \ L_{1}/L_{2}$ $(CH_{2})_{n} \ L_{3}/L_{4}$ $L_{6} \ H_{2}C$ $CH \ L_{9}$ HC $CH_{2} \ L_{8}$ HC CH $L_{5} \ n(H_{2}C)$ CH_{2} $L_{7} \ H_{2}C$ CH	L1/L2 - 0.86 (o) L3/L4 - 1.27 (o) L5 - 1.70 (o) L6 - 2.01 L7 - 2.25 L8 - 2.76 L9 - 5.29	17.0 25.7; 32.5 29.7 30.5 36.4 20.06 29.0 131.8			

s – simplet; d – duplet; t – triplet; q – quadruplet; quin – quintet; dd – double of duplets; dt – double of triplets; o – overlapping signal; n – no information; no – not observed.

Table S3. Organic compounds identified in the mice feces samples.

Stanotunos	$\delta^{\ l} H$	$\delta^{I3}C$	Ref.	Ref.
Siruciures	(multip.*J in Hz)	(HSQC)	^{1}H	¹³ C

AMINO ACIDS				
Methanol H ₃ C—ОН	1 - 3.36 (<i>s</i>)	52.6	3.37 (s)	51.4
Alanine $HO \xrightarrow{1}{2} CH_3$ $HO \xrightarrow{1}{1} HO$	2 - 3.80 (o) 3 - 1.49 (<i>d</i> 7.8)	54.1 19.5	3.9 (q 7.3) 1.52 (d 7.3)	53.4 19.1
Threonine O HO HO 1 2 3 HO 1 1 2 3 OH HO HO 1 HO	2 - 3.9 (o) 3 - 4.3 (o) 4 - 1.33 (d 6.6)	63.3 68.9 23.4	3.81 (<i>d</i> 4.2) 4.35 (<i>m</i>) 1.35 (<i>d</i> 6.5)	63.4 69.3 22.3
$HO \xrightarrow{Valine} CH_3 \\ HO \xrightarrow{HO} HH_2 CH_3$	2 - 3.78 (o) 3 - 2.30 (o) 4 -1.00 (o) 5 - 1.05 (o)	63.2 32.3 19.5 20.7	3.82 (<i>d</i> 4.4) 2.33 (<i>m</i>) 1.02 (<i>d</i> 7.1) 1.06 (<i>d</i> 7.1)	n 32.0 19.1 20.9
Leucine HO H	2 - no 3,4 - 1.70 (o) 5,6 - 0.97 (<i>t</i> 6.0)	42.8 25.0 23.8	3.90 (no) 1.73 (<i>m</i>) 0.96 (<i>t</i> 5.9)	42.6 26.8 23.6
Glutamine H_2N 4 3 2 1 OH H_2	2 - 3.77 (o) 3 - 2.11 (o) 4 - 2.36 (m)	57.4 29.8 36.0	3.77 (o) 2.12 (m) 2.45 (m)	57.2 29.3 33.9
Tyrosine	6,8 - 6.91 (<i>m</i>) 5,9 - 7.20 (<i>m</i>) 2 - (0)	118.7 133.7 no	6.89 (m) 7.19 (m) 3.93 (dd)	118.9 133.5 59.0

0 5 2 II	3 - 3.04 (o)	no	3.06 (<i>dd</i>)	38.3		
	1					
0						
Phenylalanine						
	50 724 (m)	122.0	7.22 (1(.09)	122.1		
5 4 3 2 1 3 2 1 3 2 1 3 3 2 1 3 3 2 1 3 3 3 3 3 3 3 3 3 3	5,9 - 7.24 (m) 6 8 - 7 42 (m)	132.0	$7.32 (a \ 0.98)$ $7 \ 42 \ (m)$	132.1		
I I I I I I I I I I I I I I I I I I I	7 - 7.32 (m)	131.7	7.37 (<i>m</i>)	130.4		
7 9 NH2						
8						
$Uracyl^{1,2}$						
	1 - 5.80 (d 7.80)	104.2	5.79 (d 7.69)	103.7		
	2 - 7.34 (a 7.80)	110	7.50(<i>a</i> 7.09)	140.2		
H NO						
ORGANIC ACIDS						
Lactic						
0		70.1	4.10 (71.4		
	2 - 4.06 (q / .30) 3 - 1.33 (o)	72.1	$4.10(q \ 6.93)$ 1 32 (d 6 93)	22.9		
	5 1.55 (0)	20.7	1.52 (4 0.55)	22.9		
Он						
Succinic						
	2 - 2.42(s)	36.9	2.39 (s)	36.8		
Ö						
Propionic						
О ІІ з	2 - 2.19 (o)	34.1	2.17 (q 7.41)	33.4		
HO 1 CH3	5 -1.05 (0)	15.5	1.00 (1 7.41)	15.0		
Butyric						
l o	2 - 2.19 (o)	42.7	2.16 (<i>t</i> 7.41)	42.1		
	3 - 1.56 (m)	22.6	1.56 (sex 7.41)	21.9		
HO ¹ ² CH ₃	4 - 0.90 (<i>t</i> 7.8)	16.6	0.90 (t /.41)	16.1		
Acetic	2 - 1.93 (s)	27.2	1.90 (s)	26.1		

HO ² ₁ CH ₃				
Formic H 1 OH	1 - 8.46 (s)	173.5	8.46 (s)	173.9
5-Aminovaleric acid 6 + 12N + 4 + 2 + 0H	2 - 40.7 3 - 25.0 4 - 29.8 5 - 42.4	40.7 25.0 29.8 42.4	2.21 (<i>t</i> 6.86) 1.62(<i>m</i>) 1.65 (<i>m</i>) 3.00 (<i>t</i> , 7.09)	39.4 25.2 29.3 42.2
	CARBOHYDRAT	TES		<u> </u>
Sucrose HOHHOHHOHHOHHOHHOHHOHHOHHOHHOHHOHHOHHOH	$1 - 5.42 (d \ 3.70)$ $2 - 3.56 (o)$ $3 - 3.76 (o)$ $4 - 3.48 (o)$ $5 - 3.85 (o)$ $6 - 3.82 (o)$ $1' - 3.82 (o)$ $2' - 3.89 (o)$ $3' - 4.05 (m)$ $4' - 4.22 (m)$ $6' - 3.68 (m)$	95.1 74.1 75.5 72.3 75.5 63.1 65.2 84.3 77.0 79.3 64.5	5.44 (d 3.80) 3.89-3.57 (m) n n n n 4.08 (t 8.40) 4.24 (d 9.0) n	94.7 73.5 75.0 71.8 74.9 62.8 64.0 83.7 76.6 79.0 65.0
HO =	1 - 5.24 (<i>d</i> 3.80) 2 - 3.47 (<i>m</i>) 3 - 3.77 (<i>m</i>) 4 - 3.56 (<i>m</i>) 5 - 3.72 (<i>m</i>) 6 - 3.85 (<i>m</i>)	95.1 72.3 75.6 74.0 63.9 75.5	5.25 (d 3.80) 3.89-3.36 (o) n n n n	95.4 72.2 76.0 72.8 64.2 74.5

	1			
β -glucose HO HO HO 3 H O H HO HO HO HO HO HO HO HO HO HO HO HO	1 - 4.66 (<i>d</i> 7.90) 2 - 3.26 (<i>m</i>) 3 - 3.75 (<i>m</i>) 4 - 3.48 (<i>m</i>) 5 - 3.41 (<i>m</i>) 6 - 3.90 (<i>m</i>)	98.8 77.5 63.6 78.8 72.2 63.7	4.66 (<i>d</i> 8.10) 3.25 (<i>t</i> 8.40) n n n n	99.2 77.6 56.1 79.0 72.8 63.1
Fructose HO 4^{6} 0^{2} 0^{1} OH HO 0^{2} 0^{1} OH	3 - 4.12 (o) 4 - 4.12 (o) 5 - 3.81 (o) 1 - 3.48 (o) 6 - 3.82; 3.72 (o)	78.3 77.1 84.2 65.3; 66.5	3 - 4.10 (o) 4 - 4.10 (o) 5 - 3.81 (o) 7 - 3.48 (o) 11 - 3.8; 3.66 (o)	78.2 77.4 83.6 65.4 65.6
	OTHER COMPOL	VNDS		
Dimethylamine H H_3C CH ₃	1 - 2.73 (s)	37.6	2.76 (s)	39.2
Trimethylamine	1 - 2.91 (s)	47.7	2.88 (s)	47.2

 $H_3C \xrightarrow{t} CH_3$ s - simplet; d - duplet; t - triplet; q - quadruplet; quin - quintet; dd - double duplet; dt - double triplet; o - overlapping signal; n - no information; no - not observed.

Models	LV1+LV2+LV3 ^a	$r^2 cal^b$	<i>RMSEC^c</i>	r^2 val ^d	<i>RMSEV</i> ^e	SEC/SEV ^f
<i>Feces alip+carb</i>	93.1 %	0.93	0.21	0.92	0.24	0.88
Feces arom	98.3 %	0.98	0.11	0.95	0.18	0.61
Serum	95.4 %	0.95	0.17	0.94	0.20	0.85

Table S4. Statistical parameters of the PLS-DA models from ¹H NMR analysis for both serum and feces evaluations (sections 3.2 and 3.3, respectively).

^a Total variance percent in X matrix refer to the first three Latent Variables (LV); ^b Coefficient of correlation between the real and predicted values during the calibration; ^c Root Mean Square Error of Calibration; ^d Coefficient of correlation between the real and the predicted values during the validation; ^e Root Mean Square Error of Cross Validation; ^f Similarity criterion.

Figure S1 illustrates the loadings of the PC2 and PC3 axes (between δ 0.8 and 5.5 – aliphatic and carbinolic region) plotted in lines from PCA evaluation of serum.

Figure S1. PC2 and PC3 loadings of the aliphatic and carbinolic region plotted in lines from serum evaluation.

Figure S2 illustrates the loadings of the PC1 and PC3 axes (between δ 0.8 and 5.5 – aliphatic and carbinolic region) plotted in lines from PCA evaluation of feces.

Figure S2. PC1 and PC3 loadings of the aliphatic and carbinolic region plotted in lines from feces evaluation.

Figure S3a illustrates the 3D scores from feces samples using PC1, PC2, and PC3 axes (63.3 % of the total variance) with projections in PC2 × PC3 plane, and Supplementary Figure 4b presents the PC3 loadings plotted in lines that retained the most significant responses. The CD samples were symbolized by blue color, those from HFD in red, and from HFD-CABwc in green. The loading from PC1 and PC2 axes were presented separately at Supplementary Figure S5 due to the low contribution for the experiment.

Figure S3 a) $PC1 \times PC2 \times PC3$ scores coordinate system from aromatic region, with projections in $PC2 \times PC3$ plane for feces samples: mice fed chow diet (CD) in blue color, mice fed high fat diet (HFD) in red, and mice fed HFD supplemented cashew apple fiber without low molecular weight metabolites (HFD-CABwc) in green; b) PC3 loadings plotted in lines form.

Figure S4. PC1 and PC2 loadings of the aromatic region plotted in lines from feces evaluation.

3. References

- Wishart, D. S. *et al.* HMDB 3.0 the human metabolome database in 2013. *Nucleic Acids Res* 41, D801-D807, doi:10.1093/nar/gks1065 (2012).
- 2 Alves Filho, E. G. *et al.* Non-targeted analyses of organic compounds in urban wastewater. *Magn Reson Chem* **53**, 704-710, doi:10.1002/mrc.4169 (2015).
- 3 Alves Filho, E. G. *et al.* 1H qNMR and Chemometric Analyses of Urban Wastewater. *J Braz Chem Soc* **26**, 1257-1264, doi:10.5935/0103-5053.20150091 (2015).
- 4 Ye, Y. *et al.* Effects of food processing on the nutrient composition of Pyropia yezoensis products revealed by NMR-based metabolomic analysis. *J Food Nutr Res* 2, 749-756, doi:10.12691/jfnr-2-10-15 (2014).

- Nord, L. I., Vaag, P. & Duus, J. Ø. Quantification of organic and amino acids in beer by 1H NMR spectroscopy. *Anal Chem* 76, 4790-4798, doi:10.1021/ac0496852 (2004).
- 6 Balayssac, S. *et al.* 2D and 3D DOSY 1 H NMR, a useful tool for analysis of complex mixtures: application to herbal drugs or dietary supplements for erectile dysfunction. *J Pharm Biomed Anal* **50**, 602-612, doi:10.1016/j.jpba.2008.10.034 (2009).
- Davis, A. L., Cai, Y., Davies, A. P. & Lewis, J. 1H and 13C NMR assignments of some green tea polyphenols. *Magn Reson Chem* 34, 887-890, doi:10.1002/(SICI)1097-458X(199611)34:11<887::AID-OMR995>3.0.CO;2-U (1996).
- Alves Filho, E. G., Silva, L. M., Teofilo, E. M., Larsen, F. H. & de Brito, E. S. 1H
 NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).
 Data in Brief 11, 136-146, doi:10.1016/j.dib.2017.01.013 (2017).