Electronic Supplementary Information

Non-volatile pungent compounds isolated from Zingiber officinale

and their action mechanisms

Dabo Pan,^{†,a} Chen Zeng, ^{†,a,d} Weiyang Zhang,^b Ting Li,^a Zifei Qin,^a Xiaojun Yao,^c Yi Dai,^a Zhihong Yao,^a Yang Yu,^{*,a} and Xinsheng Yao^{*,a}

^{a.} Institute of Traditional Chinese Medicine & Natural Products, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P.
R. China Yang Yu, E-mail: 1018yuyang@163.com, Xinsheng Yao, E-mail: tyaoxs@jnu.eu.cn Tel: +86 20 85221767, Fax: +86 20 85221559

- ^{b.} Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, P. R. China
- ^{c.} State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- ^{d.} Xiangxue Academician workstation, Xiangxue Pharmaceutical Co. Ltd. Guangzhou 510663, P. R. China
- † These authors contributed equally to this work

1 Spectroscopic data of isolated new compounds

4(Z),8(Z)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)tetradecan-4,8-dien-3-one

(1) light yellow oil; UV (MeOH) λ_{max} (log ε): 203 (4.16), 230 (3.31), 281 (3.97) nm; IR (KBr) v_{max} : 3349, 2943, 2865, 1632, 1597, 1568, 1510, 1281, 1029, 969 cm⁻¹; ¹H (in CDCl₃, 600 MHz) and ¹³C NMR (in CDCl₃, 150 MHz) data see Table 1; HRESIMS m/z 347.2217 [M+H]⁺ (calculated for C₂₁H₃₁O₄, 347.2222).

4(Z),10(Z)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)hexadecan-4,10-dien-3one (2) light yellow oil; UV (MeOH) λ_{max} (log ε): 205 (4.24), 226 (3.89), 281 (3.73) nm; IR (KBr) v_{max} : 3332, 2940, 2358, 1629, 1565, 1508, 1284, 1154 cm⁻¹; ¹H (in CDCl₃,

600 MHz) and ¹³C NMR (in CDCl₃, 150 MHz) data see Table 1; HRESIMS m/z

375.2538 [M+H]⁺ (calculated for C₂₃H₃₅O₄, 375.2535).

4(Z)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)hexadec-4-en-3-one (3) light yellow power; UV (MeOH) λ_{max} (log ε): 204 (3.82), 229 (3.34), 281 (3.54) nm; IR (KBr) v_{max} : 3440, 2932, 2862, 1702, 1603, 1519, 1267, 1032, 803 cm⁻¹; ¹H (in CDCl₃, 600 MHz) and ¹³C NMR (in CDCl₃, 150 MHz) data see Table 1; HRESIMS *m/z* 377.2687 [M+H]⁺ (calculated for C₂₃H₃₇O₄, 377.2692).

4(Z), 11(Z), 14(Z)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)eicos-4, 11, 14-

trien-3-one (4) light yellow oil; UV (MeOH) λ_{max} (log ε): 204 (4.31), 229 (3.61), 281 (3.97) nm; IR (KBr) v_{max} : 3335, 2943, 1632, 1508, 1157, 966 cm⁻¹; ¹H (in CDCl₃, 600 MHz) and ¹³C NMR (in CDCl₃, 150 MHz) data see Table 2; HRESIMS *m/z* 451.2821 [M+Na]⁺ (calculated for C₂₇H₄₀O₄Na, 451.2824).

4(E), 11(Z), 14(Z)-1-(4-hydroxy-3-methoxyphenyl)eicos-4, 11, 14-trien-3-one (5)

light yellow oil; UV (MeOH) λ_{max} (log ε): 204 (4.22), 229 (3.48), 280 (3.97) nm; IR (KBr) v_{max} : 2935, 2859, 1668, 1513, 1447, 1267, 1029, 980, 808 cm⁻¹; ¹H (in CDCl₃, 600 MHz) and ¹³C NMR (in CDCl₃, 150 MHz) data see Table 2; HRESIMS *m/z* 435.2860 [M+Na]⁺ (calculated for C₂₇H₄₀O₃Na, 435.2875).

1-(4-hydroxy-3-methoxyphenyl)-3-(4-nonanyl furan-1-yl)propan-3-one (6) light yellow oil; UV (MeOH) λ_{max} (log ε): 204 (4.37), 222 (3.67), 278 (3.76) nm; IR (KBr) v_{max} : 3425, 2932, 2862, 1668, 1513, 1269, 1035, 806 cm⁻¹; ¹H (in CDCl₃, 600 MHz) and ¹³C NMR (in CDCl₃, 150 MHz) data see Table 2; HRESIMS *m/z* 373.2379 [M+H]⁺ (calculated for C₂₃H₃₃O₄, 373.2379).

D		1		3		
Pos.	δ_{C}	$\delta_H(J ext{ in Hz})$	$\delta_{ m C}$	$\delta_H (J ext{ in Hz})$	$\delta_{ m C}$	$\delta_H (J ext{ in Hz})$
1′	132.6		132.6		132.7	
2'	110.9	6.67, d (1.9)	110.9	6.67, d (1.9)	110.9	6.67, d (2.0)
3'	146.4		146.4		146.3	
4'	144.0		144.0		143.9	
5'	114.3	6.82, d (8.2)	114.3	6.82, d (8.2)	114.3	6.83 d (8.1)
6'	120.8	6.69, dd (8.2, 1.9)	120.8	6.69, dd (8.2, 1.9)	120.8	6.69, dd (8.1, 2.0)
1	31.3	2.86	31.3	2.86	31.3	2.86
2	40.5	2.57	40.6	2.57	40.5	2.57
3	193.4		193.6		193.5	
4	99.6	5.45, s	99.4	5.45, s	99.4	5.45, s
5	193.4		194.0		194.3	
6	38.2	2.32	38.1	2.26	38.3	2.32
7	23.4	2.32	25.3	1.59	25.7	1.59
8	127.3	5.30	29.2	1.30	29.6	1.27
9	131.5	5.40	26.9	2.01	29.6	1.27
10	27.1	2.01	129.0	5.33	29.4	1.27
11	29.3	1.30	130.5	5.37	29.3	1.27
12	31.5	1.30	27.2	2.01	29.3	1.27

Table S1 NMR spectroscopic data (in CDCl₃) of compounds 1-3

13	22.5	1.28	29.3	1.30	29.2	1.27
14	14.0	0.88, t (7.0)	31.5	1.30	31.9	1.27
15			22.6	1.30	22.7	1.27
16			14.1	0.88, t (7.0)	14.1	0.88, t (7.0)
3'-	55.0	2.07	55.0	2.07	55.8	3.87, s
OCH ₃	55.9	3.87, s	55.8	3.87, s		
4'-OH		5.48, br s		5.48, br s		5.47, br s
5-OH		15.47, br s		15.50, br s		15.51, br s

Multiplets and or overlapped signals are reported without designating multiplicity

_		4			6	
Pos.	δ_{C}	$\delta_H(J \text{ in Hz})$	δ_{C}	δ_H (J in Hz)	$\delta_{ m C}$	δ_H (J in Hz)
1′	132.6		133.2		133.3	
2'	110.9	6.67,d (1.9)	111.1	6.69, d (1.9)	111.1	6.74, d (1.9)
3'	146.4		146.4		146.4	
4′	143.9		143.8		143.9	
5'	114.3	6.82, d (7.8)	114.3	6.82, d (7.8)	114.3	6.83, d (8.2)
6' 1	120.0	6.69, dd (7.8,	100.0	6.71, dd (7.8,	120.8	6.72, dd (8.2,
	120.8	1.9)	120.8	1.9)		1.9)
1	31.3	2.86	29.8	2.85	29.6	2.93
2	40.5	2.57	42.0	2.86	43.4	3.01
3	193.5		199.7		195.6	
4	99.4	5.45, s	130.3	6.09, d (15.9)	120.2	
5	194.1		147.7	6.83, d (15.9)	140.2	7.23, d (2.0)
6	38.2	2.24	32.4	2.19	109.9	6.58, d (2.0)
7	25.6	1.59	28.0	1.45	162.9	
8	28.8	1.31	28.8	1.59	28.0	3.01
9	29.3ª	1.31 ^b	29.4ª	1.31 ^b	27.8	1.65
10	27.0	2.05	27.0	2.05	29.5	1.30
11	129.7	5.35	129.7	5.35	29.3	1.30

Table S2 NMR spectroscopic data (in CDCl₃) of compounds 4-6

12	128.3	5.36	128.3	5.36	29.3	1.30
13	25.6	2.76	25.6	2.76	29.3	1.30
14	127.8	5.32	127.8	5.32	31.9	1.30
15	130.3	5.38	130.3	5.38	22.7	1.30
16	27.2	2.05	27.2	2.05	14.3	0.89, t (7.0)
17	29.3ª	1.31 ^b	29.3ª	1.31 ^b		
18	31.5	1.31	31.5	1.31		
19	22.6	1.31	22.6	1.31		
20	14.0	0.87, t (7.0)	14.0	0.87, t (7.0)		
3' -						
OCH ₃	55.8	3.87, s	55.8	3.87, s	55.9	3.86, s
4'-						
ОН		5.48, br s		5.48, br s		5.48, br s
5-OH		15. 50, br s				

^{a,b} Signals could be interchangeable with the corresponding position in one compound

Multiplets and or overlapped signals are reported without designating multiplicity

Uniprot ID	Gene Name	GO Function
P04150	NR3C1	apoptotic process, cell division, cell cycle
Q09472	EP300	apoptotic process, B cell differentiation, lung development, fat cell differentiation
P21554	CNR1	positive regulation of apoptotic process, G protein-coupled receptor signaling pathway
Q9NR56	MBNL1	myoblast differentiation, nervous system development
P10636	MAPT	regulation of autophagy, positive regulation of neuron death, negative regulation of kinase activity
Q9BYJ1	ALOXE3	fat cell differentiation, peroxisome proliferator activated receptor signaling pathway
P61981	YWHAG	regulation of G2/M transition of mitotic cell cycle, regulation of neuron differentiation
P14555	PLA2G2A	positive regulation of ERK1 and ERK2 cascad, positive regulation of macrophage derived foam cell differentiation
O15296	ALOX15B	negative regulation of cell proliferation, negative regulation of cell migration
Q04760	GLO1	negative regulation of apoptotic process, osteoclast differentiation
P35968	VEGFR2	cell differentiation, positive regulation of cell migration
Q9UBM7	DHCR7	cell differentiation
P08908	HTR1A	cell proliferation
Q16236	NFE2L2	negative regulation of endothelial cell apoptotic process, negative regulation of hematopoietic stem cell differentiation

Table S3 14 key cancer-related targets

Figure S1. BPI chromatogram of the ZO-2 by UPLC-Q/TOF-MS

Figure S2. Potential active compound-target network (cyan round rectangles stand for the compounds, yellow triangles represent the cancer related targets, and gray V shape are other targets)

Figure S3. Effect of VEGFR2 enzyme inhibitory activity of Staurosporine

Figure S4.The monitoring of the equilibration for the MD trajectories: (A) the time series of the RMSD of Cα atoms for the residues in 5 Å around of ligand from the initial structure; (b) time evolution of the RMSD of heavy atoms for the ligand.

Figure S5. (A) The residue contributions of VEGFR2 to compound 8 binding; (B) the energy difference of each residue contribution for the compound 8-VEGFR2 relative to the compound 7-VEGFR2.