Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2018

-5 _____1

101

201 301 Species Rank per group

401

Figure S1 Dietary GABA supplementation highly regulates composition and alpha diversity of the intestinal microbiota. Rarefraction curve (A, per sample; B, group) revealed that sequencing data, sequencing depth and coverage met the demand of the followed analysis. Venn graph (C) illustrated the general profiles of OTUs between Con group and GABA group. Rank abundance curve (C, per sample; D, group) shown that GABA altered Alpha diversity of gut microbome. Con, control group (N=6); GABA, GABA group (N=7). **: P<0.01;***: P<0.001.

Figure S2 Relative contribution of intestinal microbiota in content of colon in control group (N=6) and GABA group (N=7). Relative contribution of microbiota in each sample (phylum, A; order, B; genus, C) and in each group (phylum, D; order, E; genus, F); Con, control group (N=6); GABA, GABA group (N=7).

Ingredients	Basal diet (%)	Analyzed chemical composition	
Corn	61.00	Dry matter (%)	85.99
Soybean meal	10.00	Crude protein ² (%)	18.89
Extruded soybean	8.00	Crude fiber (%)	2.20
Fermented soybean	5.00	Net energy (kcal/kg)	2330.03
Whey powder	8.00	Digestive energy (kcal/kg)	3467.31
Fish meal	3.00		
Soybean oil	0.70		
Sucrose	1.00		
Premix ¹	1.00		
Limestone power	0.51		
Total	100.00		

Table S1 Composition and nutrients contents of the basal diet

¹ Premix provided the following amounts of vitamins and trace minerals per kg of the complete diet: Organic trace minerals 0.15%; Piglets vitamin 0.04%; Carrier 0.38%; Antioxidant 0.1%; Calcium dihydrogen phosphate 0.78%; Salt 0.37%; Lysine HCL (98%) 0.64%.

² The analyzed composition of amino acids (%, as-fed basis) in the basal diet was as follows: alanine, 0.86; arginine, 1.35; aspartate plus asparagine, 1.87; cysteine, 0.18; glutamate plus glutamine, 3.01; glycine, 0.91; histidine, 0.43; isoleucine, 0.80; leucine,1.47; lysine, 2.02; methionine, 0.21; phenylalanine, 0.87; proline, 0.89; serine, 0.92; threonine, 0.74; tyrosine, 0.47; and valine, 0.79.

Table S2 Primers used in this study

Gene Name	Accession No.	Sequence (5'-3')	Size (bp)
GAD1	NM 213894.1	GAGCGAACAGGTTGGAGAAG	126
	_	AGAAGAGCAGGCTTGTGAGC	
GAD2	NM 213895.2	AGACAAGGCCTTACAGTGCG	195
	—	TGGCCTTAATCACTGGAGCC	
SLC6A12	XM_003126574.4	GATGGAGTTCGTGCTGTCTG	132
		CCGCAGGTGAAGAAGAAGAT	
SLC6A11	XM_005657080.1	GGGCATTCCTGATTCCCTAT	123
		GGCACACTTTCCTCCAACAC	
SLC6A13	XM_003126576.4	CAGTTTGTGTGCGTGGAAAG	119
		ACGAGGAAGGAGGTGACAGA	
SLC6A1	XM_005669778.2	CTGGACTGGAAAGGTGGTCT	130
		GCGGAAGTTGGGTGTGATA	
GABAB1	NM_001123114.1	GCCCGTGGACTATGAGATTG	136
		CITGGAGCAGATTCGGACAC	
GABAB2	XM_003122032	CATCACCCTTTGCCTGGTGT	275
	30.4.01000.407.6	AGGIGGICITITICIGGIGIGI	100
GABAAGT	XM_013984876	GCCTTCCCATTGCTGTTTGG	132
	30.4.012070744	GCAGAGGACGGAACAACAGA	101
GABAAGG	XM_013978644	GGATGATGGGGACTCTGCTGT	101
	VA 002125460		105
GABAAGG	XM_003135469	TGGUUAAGGGGAATCTCCAAGAU	195
	VM 002256006		150
GABAACA	XM_003330900		158
	VM 002121649		1.4.1
UADAAUT	AM_003121048		141
CADAACC	VM 002124000		214
UADAAUC	AM_003134090	GCCGGCACAGATTCCTTAT	514
GABAAGC	XM 013084877	GCTGCTAGTGCCAACAATGA	122
UADAAUC	AWI_013904077	GTTGGGGAGAGGGTTTCCAGT	122
GABAAG	XM 013988717	TCTCCTACAACCACACCAACG	139
ONDIMO	<u> </u>	AGCCTGATGAGCTTGTTCTCC	157
GABAAG	XM 013986487	ACCTGGTGAGCCTGTTATGG	122
O/ID/IIIO	<u></u> 015700107	GTACAACACCTTGCCGTCCT	122
GABAAAC	XM 003128952 5	CAAAACTTGGGTCTTGGCACC	118
0110111110		TACTGTGGGCCTCACTCCTA	110
GABAATG	XM 003359825	CTCCCAATAGGATGCTGAGG	120
		GGCAGGAGTGTTCATCCATT	
GABAAGA	XM 005659794	ATGGGCCTCAGAAACACCAC	291
	_	CACGAAGAGGTCCATAGCGG	
GABAAA	XM 003134060.4	CTTCACTTTGGATGCACGCC	137
	—	ACAGGACTGTGCCATTGGAG	
GABAAA	XM_013986506	AGAGGCAACTCACAAGAGCC	151
	_	GGGGGACTTTCCTCATCAGC	
GABAAAC	XM_013992689.1	AACGACCTGGGCAACTACAC	112
		TGCTCCTCTGGCTCTTCCT	
TLR2	NM_213761.1	TGCTATGACGCTTTCGTGTC	163
		CGATGGAGTCGATGATGTTG	
TLR4	XM_013986843.1	TCAGTTCTCACCTTCCTCCTG	166
		GITCATICCTCACCCAGTCTTC	
TLR5	NM_001123202.1	CUTTCUTGUTTCITTGATGG	124
		CIGIGACCGICCIGAIGIAG	

TLR6 NM_213760.1		AACCTACTGTCATAAGCCTTCATTC	95
		GICIACCACAAAIICACIIICIICAG	1.40
MyD88	XM_013992286.1	GAIGGIAGCGGIIGICICIGAI	148
I D		GAIGCIGGGGAACICIIICIIC	0.0
pIgR	NM_214159.1	AACCICACCAACIICCCAGAG	98
		CTAATGCCCAGACCACACITG	01.4
Muc 4	XM_013989745.1	GGCIGCICALIGAGAGGAGI	214
		ATGTTCCCGAACTCCAAGG	0.6
Muc 2	NM_001206344.1	AGGATGCCCAATGGCTCTACT	96
		AAGGAGGCIGGIICCGIIGAI	60
Muc I	XM_001926883.5	ACACCCATGGGCGCTATGT	68
		GCCTGCAGAAACCTGCTCAT	• • • •
IL-I	NM_001302388.1	AAAGGGGACITGAAGAGAG	286
		CTGCTTGAGAGGTGCTGATGT	
IL-18	NM_213997.1	TATGCCTGATTCTGACTGTT	260
		ATGAAGACTCAAACTGTATCT	
TNF-A	NM_214022.1	TTCCTCACTCACACCATCAGCC	224
		TGCCCAGATTCAGCAAAGTCC	
IL-2	NM_213861.1	CTGGATTTACAGTTGCTTTTG	348
		AGTCAGTGTTGAGTAGATGCTTT	
IFN-A	NM_213948.1	GGCCATTCAAAGGAGCATGG	139
		GATGGCTTTGCGCTGGATCT	
IL-10	NM_214041.1	CATCCACTTCCCAACCAGCC	220
		CTCCCCATCACTCTCTGCCTTC	
IL-6	NM_001252429.1	TGGCTACTGCCTTCCCTACC	132
		CAGAGATTTTGCCGAGGATG	
IL-4	NM_214123.1	TCCACGGACACAAGTGCGAC	243
		TGTTTGCCATGCTGCTCAGG	
IL-23	NM_001130236.1	ACAGCAGCTCTGCACGCTGG	125
		CACAGCCATCCCCGCACTGG	
IL-17	NM_001005729.1	ATCCTCGTCCCTGTCACTGC	120
		ACATGCTGAGGGAAGTTCTTGTC	
IL-22	XM_001926156.1	GATGAGAGAGCGCTGCTACCTGG	112
		GAAGGACGCCACCTCCTGCATGT	
ACTB	XM_003124280.4	CTGCGGCATCCACGAAACT	147
		AGGGCCGTGATCTCCTTCTG	
GAPDH	NM_001206359.1	ATCCTGGGCTACACTGAGGAC	104
		AAGTGGTCGTTGAGGGCAATG	

Primers were designed under the principle of primer design with Primer 6.0 software (PRIMER-E, New Zealand) and Oligo 5.0 software (Molecular Biology Insights, Inc., USA) according to the gene sequences of sus scrofa on GenBank.

Sample	Raw PE(#)	Raw	Clean	Effective	Base(nt)	AL	Q20	Q30	GC%	Effective
Name		Tags(#)	Tags(#)	Tags(#)		(nt)				%
Control g	roup									
Con2	76,850	69,682	63,673	63,197	25,691,450	407	98.42	96.90	52.70	82.23
Con3	89,171	81,210	74,470	73,676	29,893,179	406	98.47	97.02	52.92	82.62
Con4	75,639	68,830	61,130	60,379	24,900,382	412	98.41	96.87	52.71	79.83
Con6	80,291	73,490	67,785	67,289	27,258,863	405	98.53	97.11	53.05	83.81
Con7	56,619	51,354	46,495	45,818	18,736,673	409	98.43	96.95	51.66	80.92
Con8	78,612	71,536	64,566	64,038	26,197,248	409	98.42	96.90	52.87	81.46
GABA gr	oup									
GABA1	85,203	77,446	66,776	63,694	26,909,747	422	98.38	96.75	51.44	74.76
GABA2	76,566	64,542	55,804	53,008	22,281,080	420	98.35	96.73	51.38	69.23
GABA3	78,750	70,843	61,059	59,038	24,685,709	418	98.25	96.54	52.70	74.97
GABA4	79,466	71,534	63,259	61,803	25,717,880	416	98.48	97.05	51.32	77.77
GABA6	52,976	47,745	43,343	42,672	17,358,252	407	98.42	96.92	52.83	80.55
GABA7	82,775	74,201	64,816	62,697	26,061,677	416	98.35	96.74	53.88	75.74
GABA8	63,949	57,177	50,880	49,775	20,586,971	414	98.43	96.96	50.80	77.84
Average	75,144	67,661	60,312	59,006	24,329,162	412				
SUM	976,867	879,590	784,056	767,084	316,279,111					
D 1	1 1 0	•11 •	1 • 1 /1	1 /			1	1 1 /	1.	

Table S3 Paired-end reads assembly and quality control

Paired-end reads from illumina high-throughput sequencing were processed by data split, sequence

assembly, data filtration and chimera removal to obtain effective tags. Piglets from control group

(Con2-4, 6-8) and GABA group (GABA1-4,6-8) accessed to basal diet supplemented without and

with GABA, separately. AL, Average length

Indices	Con	GABA	SEM	P (T-test)	P (Wilcoxon)
Observed species	179.67	387.57	58.43	0.000	0.001
Goods coverage	0.999	0.998	0.00	0.023	0.045
Chao1	231.69	434.87	85.11	0.002	0.005
AEC	231.05	447.83	69.90	0.000	0.002
Shannon	1.85	4.19	0.63	0.000	0.001
Simpson	0.50	0.86	0.15	0.002	0.001
PD whole tree	22.38	44.63	11.27	0.002	0.002

Table S4 Pyrosequencing data and diversity indices of the microbiota in ileal content of piglets

Richness indices (Observed species, Goods coverage, Chao1 and AEC) and diversity indices (Shannon, Simpson and PD whole tree) were statistically calculated by mothur. Piglets from control group (Con, n=6) and GABA group (GABA, n=7) accessed to basal diet supplemented without and with GABA, separately. Both unpaired t-test and Wilcoxon nonparametric test were used for analyzation of the data. *: P<0.05. AEC, Abundance-based Coverage Estimator; PD whole tree, phylogenetic diversity whole tree.