Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2019

Supplementary Tab. S1

Tab. S1 The chemical profile of SEC analyzed by GC-MS analysis and the

No.	Components	R.t. ^a	K.I. ^b	Percentage (%) ^c
1	camphene	4.18	818.6	0.475
2	β-cymene	5.25	1027.5	0.998
3	eucalyptol	5.40	1056.6	3.091
4	linalool oxide	6.19	1128.3	0.521
5	α-thujone	6.97	1169.2	2.186
6	β-thujone	7.24	1183.0	2.169
7	isothujol	7.68	1204.5	1.094
8	L-pinocarveol	7.89	1214.6	0.765
9	d-camphor	8.07	1223.4	8.582
10	cis-verbenol	8.53	1244.6	4.720
11	endo-borneol	8.72	1253.5	7.845
12	L-4-terpineol	9.06	1269.6	1.634
13	a-terpineol	9.49	1289.5	1.022
14	myrtenol	9.72	1300.4	1.054
15	cumaldehyde	11.43	1353.1	0.486
16	bornyl acetate	13.59	1411.0	2.948
17	thymol	13.81	1415.5	3.071
18	β-caryophyllen	20.97	1548.8	3.336
19	cis-β-farnesene	23.02	1587.9	2.270
20	α-curcumene	24.26	1615.7	5.932
21	δ-cadinene	26.10	1663.1	1.815
22	spathulenol	28.44	1728.0	1.362
23	caryophyllene oxide	28.67	1735.2	8.460
24	γ-eudesmol	29.93	1774.3	1.568
25	T-muurolol	31.19	1815.1	1.487
26	α-gurjunene	31.60	1832.5	2.161
27	aromandendrene	31.71	1834.5	2.280
28	α-bisabolol	32.53	1848.9	2.289
29	cubenol	33.04	1880.1	1.742
30	longifolenaldehyde	33.34	1890.6	2.572
31	α-bisabolol oxide	33.96	1913.3	2.600
32	hexahydrofarnesyl acetone	35.70	1981.3	1.212
33	ethyl hexadecanoate	37.67	2069.6	1.362
34	α-linolenic acid	38.82	2129.8	2.130
35	ethyl octadec-9,12- dienoate	39.45	2145.0	2.470

relative percentage calculated by the integrated peak area

a Retention time (min).

b Kovats index relative to n-alkanes (C_6 - C_{30}) on HP-5MS column.

c Relative percentage calculated by integrated peak area in Agilent MSD Chemstation data analysis program.

GC-MS analysis: GC-MS was carried out on an Agilent 6890-5975 GC-MS system consisting of an Agilent 6890 Gas Chromatography instrument, a 5975 Mass Spectrometer, and an Agilent ChemStation software (Agilent, Palo Alto, USA). Chromatographic separation was achieved on a 5% phenyl methyl siloxane HP-5MS capillary column (30 m \times 0.25 mm inner diameter, 0.25 µm film). The oven temperature was set initially at 60°C followed by a gradient of 10°C/min up to 100°C (held for 1 min) and then programmed to 110°C at 1°C/min (held for 1 min); furthermore, the temperature was up to 150°C at 3°C/min (held for 1 min) and finally to 260°C at 10° C/min (held for 5 min). Split injection (0.5 μ L) was conducted, and helium was used as carrier gas of 1.0 mL/min flow rate. The spectrometer was set in electron-impact (EI) mode, the ionization energy was 70 eV, the scan range was 40-400 amu, and the scan rate was 0.34 s per scan. The inlet, ionization source temperatures were 230°C and 250°C, respectively. Identification of the compounds was based on a comparison of retention indices (relative to the retention times of n-alkanes on the HP-5MS column) and mass spectra with those of authentic samples, data from, the Wiley/NBS Registry of Mass Spectral Data (V.5.0), and the National Institute of Standards and Technology (NIST), and the MS Search (2011, V.2.0). The relative percentage of each compound in the n-hexane layer of SEC was quantified based on the peak area integrated by the analysis program.

Number	Components	Percentage (mg/g) ^a
1	Chlorogenic acid	21.1
2	Luteolin-7-glucoside	22.8
3	Linarin	48.3
4	Luteolin	11.4
5	Acacetin	8.8

 Tab. S2 The chemical profile of SEC analyzed by HPLC-PAD analysis and the relative percentage calculated by the integrated peak area

a The content of compounds was quantitatively analyzed with peak areas under the standard curves at 334 nm.

HPLC analysis: HPLC was carried out on a Shimadzu LC-20A HPLC system consisting of a SPD-M20A PDA detector, a LC-20AT pump, a SIL-20AC automatic sampler, and a CTO-20A thermostatic column compartment (Shimadzu, Kyoto, Japan). The separation was performed on a Gemini C18 column (4.6×150 mm, 5 µm, Phenomenex Inc., CA, USA) with a flow rate of 1.0 mL/min, column temperature at 30°C, and injection volume of 5 µL. The mobile phase consisted of acetonitrile (solvent A), and 0.1% aqueous formic acid (solvent B) was used to elute the targets with the gradient mode (0–10 min: 5% A15% A; 10–25 min: 15% A30% A; 25–35 min: 30% A; 35–40 min: 30% A50% A). Analysis based on the retention time and the ultraviolet (UV) absorption (190 to 800 nm) clearly authenticated the presence of chlorogenic acid, luteolin-7-glucoside, linarin, luteolin, and acacetin. The content of these compounds was quantitatively analyzed with peak areas under the standard curves at 334 nm.

Supplementary Tab. S3

Gene	Forward primer (5'→3')	Reverse primer (5'→3')
TNF-α	CCTATGTCTCAGCCTCTTCT	CCTGGTATGAGATAGCAAAT
IL-1β	GGCAACTGTTCCTGAACTCAACTG	CCATTGAGGTGGAGAGCTTTCAGC
IL-6	CCACTTCACAAGTCGGAGGCTT	CCAGCTTATCTGTTAGGAGA
GAPDH	ATGTACGTAGCCATCCAGGC	AGGAAGGAAGGCTGGAAGAG
β-actin	AGCCATGTACGTAGCCATCC	GCTGTGGTGGTGAAGCTGTA

Table S1. Primers used in qPCR assay