Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2019

Figure S1 ¹H-NMR-based metabonomic analysis of urine and stool samples from Control and CPL, CPM groups. PCA scores of ¹H-NMR profiles of urine samples (A) and fecea samples (B) in CPL group. PCA scores of ¹H-NMR profiles of urine samples (C) and feces samples (D) in CPM group.

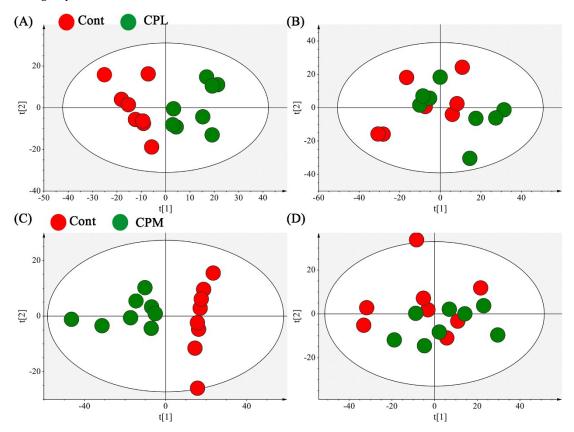


Figure S2 Partial least square discriminant analysis and validation of biological metabolites in urine and in feces. Partial least square discriminant analysis (PLS-DA) plots of biological metabolites in urine (A) and in feces (B). Validation of biological metabolites in urine (A) and in Feces (B).

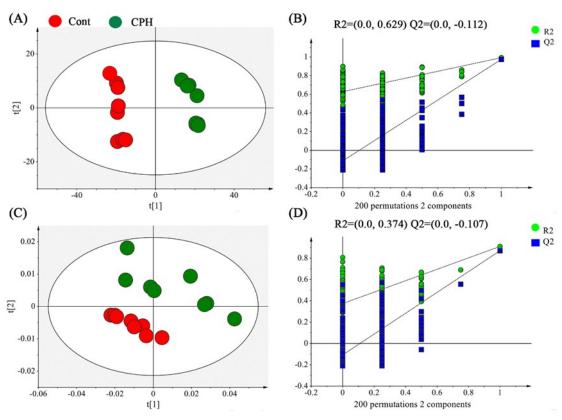


Figure S3 Rarefaction curves based on (A) Observed_species, (B) Chao1, (C) PD_whole_tree, (D) Shannon and (E) Simpson.

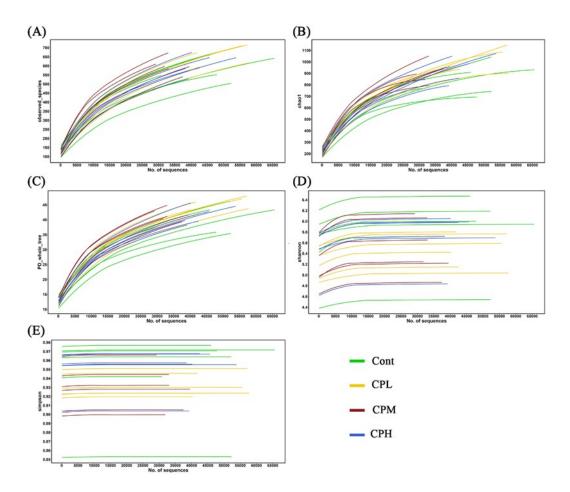


Figure S4 LEfSe was used to identify the most differentially abundant taxa in the control, CPL and CPM samples at 14 days. (A) 11 taxa meeting a significant LDA threshold valve of 2 are shown in the Control and CPL groups. (B) 40 taxa meeting a significant LDA threshold valve of 2 are shown in the Control and CPM groups. (E) 36 taxa meeting a significant LDA threshold valve of 2 are shown in the Control and CPH groups.

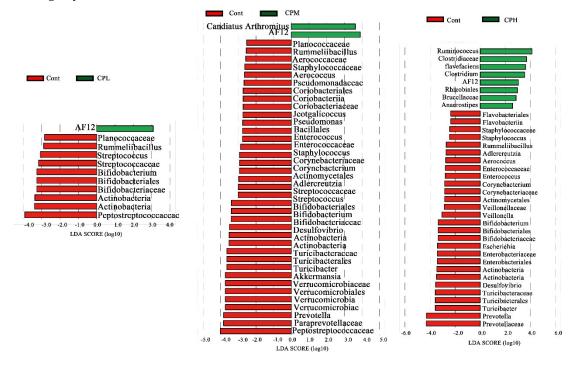
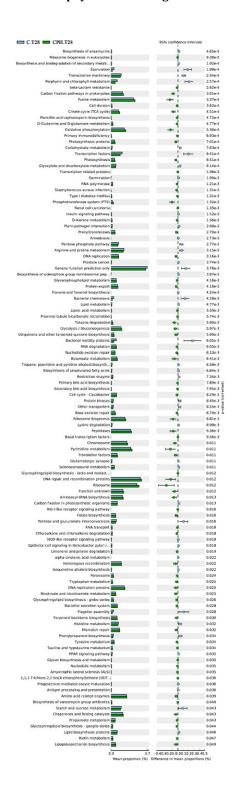



Figure S5 Changes in relative abundance of identified phyla determining the diversity of Control and CPH.

Supplementary table 1. Effect of compound polysaccharides on the body weight of young rats.

Time -	Body weight (g)				P value		
	Court	Cont CPL CPM CPH	CDM	CDII	Cont vs	Cont vs	Cont
(week)	Cont		СРН	CPL	СРМ	vs CPH	
0	61.7±4.80	56.7±7.28	64.1±12.30	64.3±10.22	0.14	0.59	0.49
1	86.9±5.72	84.6±8.61	93.0±16.54	93.5±9.98	0.73	0.31	0.10
2	123.1±9.29	121.1±11.53	132.4±22.70	129.1±12.18	0.96	0.26	0.25
3	163.4±11.92	161.3±11.03	174.7±24.52	168.8±13.75	0.97	0.23	0.39
4	205.2±17.10	205.7±11.78	218.0±30.27	212.2±13.91	0.69	0.28	0.35

Supplementary table 2. Effect of compound polysaccharides on the digestive tube/body weight.

	The digestive	P value		
	tube/body weight	Cont vs CPL	Cont vs CPM	Cont vs CPH
Cont	4.91±0.32			
CPL	4.45±0.49	0.17		
CPM	5.20±0.57		0.41	
СРН	5.53±0.65			0.13

Supplementary table 3. Effect of compound polysaccharides on the duodenum mucosal tissues.

Groups	Duodenum villus height	Duodenum villus height/ crypt depth	Duodenum muscular thickness (μm)	
	(µm)	ratio		
Cont	444.05±107.02	2.15±0.65	18.28±2.68	
CPL	476.74±68.71	2.17±0.90	14.81±2.90	
CPM	506.01±53.03	2.74±0.56	9.85±2.90	
СРН	573.20±43.50	2.99±0.24	8.84±3.37	
P.value	0.58	0.29	0.085	
(Cont vs CPL)	0.50	0.29	0.085	
P.value	0.27	0.16	0.0014	
(Cont vs CPM)	0.27	0.10	0.0014	
P.value	0.036	0.02	0.0022	
(Cont vs CPH)	0.036	0.02		

Supplementary table 4. Effect of compound polysaccharides on the ratio of CD4+/CD8+ lymphocytes cells in spleen tissues.

Groups	The ratio of CD4+/CD8+	P.value	
Cont	1.53±0.26		
CPL	1.59±0.27	0.82	
CPM	1.78±0.15	0.22	
СРН	2.17±0.30	0.045	

 $\mbox{\sc P}$ values were considered statistically significant relative to the Cont group.

$Supplementary\ table\ 5.\ The\ differences\ Bacteroidetes-to-Firmicutes\ ratio\ among\ the\ different\ four\ groups.$

Constant	Relative abund	ance (%)	Bacteroidetes-to-Firmicutes ratio
Groups ——	Bacteroidetes	Firmicutes	— Bacteroidetes-to-Firmicutes ratio
Cont	70.39±4.71	24.95±4.63	2.82
CPL	62.33±11.64	28.90±9.59	2.15
CPM	60.69±9.49	31.43±9.11	1.93
СРН	66.96±6.37	23.61±6.99	2.84