Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2018

Pressurized CO₂ as Carboxylating Agent for the Biocatalytic *ortho*-Carboxylation of Resorcinol

Katharina Plasch,^b Gerhard Hofer,^c Walter Keller,^c Sam Hay,^d Derren Heyes,^d Alexander Dennig,^e Silvia M. Glueck,^{a,b,*} Kurt Faber,^{b,*}

[a] Austrian Centre of Industrial Biotechnology (ACIB), c/o

^[b] Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria

^[c] Institute of Molecular Biosciences, University of Graz, Humboldstrasse 50, 8010 Graz, Austria

^[d] Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom

^[e] Institute of Biotechnology and Biochemical Engineering, Technical University of Graz, Petersgasse 12, 8010 Graz, Austria

Electronic Supporting Information

1.	Purification of 2,6-DHBD_Rs and 2,3-DHBD_Ao	2
2.	Sparkling water study	2
2.1.	Sparkling water analysis	2
2.2.	Sparkling water screening	2
3.	Time study	3
4.	Evaluation of buffer system	4
5.	High-resolution MS	4
6.	High pressure stopped-flow measurements	5
6.1.	Kinetics	5
6.2.	High pressure stopped-flow results	6
7.	Atom economy calculations	6
7.1.	Biocatalytic carboxylation of resorcinol (1) with CO ₂ pressure	6
8.	References	7

^{*} Corresponding authors: <Si.Glueck@Uni-Graz.at>, <Kurt.Faber@Uni-Graz.at>

1. Purification of 2,6-dihydroxybenzoic acid decarboxylase from *Rhizobium* sp. (2,6-DHBD_*Rs*) and 2,3-dihydroxybenzoic acid decarboxylase from *Aspergillus oryzae* (2,3-DHBD_*Ao*)

Lyophilized *E. coli* cells containing the corresponding overexpressed enzyme (1 g) were rehydrated in lysis buffer (10 mM imidazole, 10 mL) for 30 min at 30 °C with 120 rpm. After ultrasonication (30% amplitude, 1 sec pulse, 4 sec pause, 5 min overall time) on ice, the cells were centrifuged (10 min at 4 °C with 18 000 rpm) and the supernatant was filtered (0.45 μ m filter). For purification a HisTrapFF column with Ni-NTA matrix was used. After combining the fractions with the highest enzyme concentration (determined via Bradford assay) the fractions were centrifuged in a Vivaspin 20 (30 kDa) for 30 min at 4 °C with 4000 rpm. The purified enzymes were used for the biocarboxylation after a buffer salt exchange with a PD10 desalting column in the TRIS-HCl buffer 50 mM, pH 7.5. The overexpression of the gene was analyzed via SDS-PAGE (Figure S1).

Figure S1. SDS-PAGE analysis of a) purified 2,6-DHBD_Rs and b) purified 2,3-DHBD_Ao.

2. Sparkling water study

2.1. Sparkling water analysis

Vöslauer^{®1} (extract from full analysis) [mg L⁻¹]: K⁺ 1.6, Na⁺ 14.1, Mg²⁺ 40.7, Ca²⁺ 112.0, Cl⁻ 19.4, SO₄²⁻ 221.0, HCO₃⁻ 259.0, NO₃⁻ <1.0, *m*-silicic acid 14.1, F⁻ 0.7, dissolved solids 682.6.

Sicheldorfer^{®2} (extract from full analysis) [mg L⁻¹]: K⁺ 108.8, Na⁺ 1175.0, Mg²⁺ 87.3, Ca²⁺ 175.1, HCO₃⁻ 3400.0, I⁻ 0.8.

2.2. Sparkling water screening

For biotransformations with sparkling water as reaction medium lyophilized whole cells (30 mg, *E. coli* host cells containing overexpressed 2,3-DHBD_*Ao*) were rehydrated in sparkling water (900 μ L of Sicheldorfer[®], Vöslauer[®]). The substrate **1** [10 mM final concentration, dissolved in 50 μ L

MeOH (5% v/v)] was added to the enzyme solution (1 mL final volume) which was transferred into a glass vial. The vials were tightly sealed with screw caps and were shaken for 24 h at 120 rpm and 30 °C.

Figure S2. Conversion of the carboxylation of resorcinol (1) using 2,3-DHBD_*Ao* under standard conditions (3 M KHCO₃) and in sparkling water.

3. Time study

Lyophilized whole cells (90 mg) were rehydrated in TRIS-HCl buffer (2850 μ L, pH 9.0, 100 mM) and substrate **1** (10 mM final concentration) was added to the enzyme solution (3 mL final volume). The pressure reactor was tightly sealed and the reaction mixture was stirred at 50 rpm and 30 °C for 0, 1, 4, 24, 30 and 48 h.

Figure S3. Evaluation of the reaction time for the carboxylation of resorcinol (1) with 2,3-DHBD_Ao under 20, 30 and 40 bar CO_2 pressure within 0 – 48 h.

4. Evaluation of buffer system

In order to achieve higher conversions, the buffer system was changed from a P_i buffer 100 mM, pH 5.5 to a TRIS-HCl buffer 100 mM, pH 9.0 (20 bar CO₂, 30 °C, 50 rpm, 24 h).

Table S1. pH study using TRIS-HCl buffer (100 mM, pH 9.0) and phosphate buffer (100 mM, pH 5.5) under 20 bar CO₂ with the model substrate resorcinol (1) and 2,3-DHBD_*Ao*.

buffer system	conversion [%]
Phosphate buffer, pH 5.5, 100 mM	19
TRIS-HCl buffer, pH 9.0, 100 mM	58

5. High-resolution MS

500 μ L of purified enzyme (2,6-DHBD_*Rs*) was treated under CO₂ pressure (50 bar) for 24 h at 30 °C and 50 rpm in the pressure reactor in the absence of substrate. The final protein concentration was defined via Bradford assay and the sample was diluted with TRIS-HCl buffer (50 mM, pH 7.5) to a final concentration of 1 mg mL⁻¹. As reference the native purified enzyme was used.

Figure S4. HR-MS chromatogram of a) native 2,6-DHBD_*Rs* (calc.: 37398,92, found: 38486,5554) and b) 50 bar CO₂ pressure-treated 2,6-DHBD *Rs* (calc.: 37398,92, found: 38486,51).

6. High pressure stopped-flow system

6.1. *Kinetics*

Calculations of kinetic parameters for the high pressure stopped-flow measurements were done with 0.5 μ M enzyme and 0 – 750 μ M 2,6-dihydroxybenzoic acid (**2a**) as substrate (Figure S5 and Figure S6).

Figure S5. Plot of velocity vs. substrate concentration; 2,6-dhba (**2a**, $0 - 750 \mu$ M) with 0.5 μ M 2,3-DHBD_*Ao* as catalyst; K_m = 0.4 mM, k_{cat} = 3.6 s⁻¹.

Figure S6. Plot of velocity vs. substrate concentration; 2,6-dhba (**2a**, $0 - 750 \mu$ M) with 0.5 μ M 2,6-DHBD_*Rs* as catalyst; K_m = 0.4 mM, k_{cat} = 7.5 s⁻¹.

6.2. Stopped flow high-pressure results

Stopped flow high-pressure measurements with 2,3-DHBD_Ao and 2,6-DHBD_Rs were performed over 1 min at 30 °C at 1 bar – 1.5 kbar. Figure S7 shows the velocity (v_{obs} [μ M s⁻¹]) of each experiment at different pressure.

Figure S7. Stopped flow high-pressure measurements of 2,3-DHBD_*Ao* and 2,6-DHBD_*Rs* (0.5 μ M) with 2,6-dhba (**2a**, 250 and 500 μ M, resp.) at 320 nm (v_{obs} [μ M s⁻¹]). a) 0.5 μ M 2,3-DHBD_*Ao* and 500 μ M 2,6-dhba (**2a**); b) 0.5 μ M 2,3-DHBD_*Ao* and 250 μ M 2,6-dhba (**2a**); c) 0.5 μ M 2,6-DHBD_*Rs* and 500 μ M 2,6-dhba (**2a**); d) 0.5 μ M 2,6-DHBD_*Rs* and 250 μ M 2,6-dhba (**2a**).

7. Atom economy calculations

$$atom \ economy = \frac{molecular \ mass \ of \ desired \ product}{molecular \ mass \ of \ all \ reactants} x100$$

7.1. Biocatalytic carboxylation of resorcinol (1) with CO₂ pressure

$$atom \ economy = \frac{154.12 \frac{g}{mol}}{110.11 \frac{g}{mol} + 44.01 \frac{g}{mol}} x100 \underbrace{\bigcirc}_{2}^{OH} \underbrace{\bigcirc}_{2}^{OH} \underbrace{\bigcirc}_{1}^{OH} CO_{2}$$

The atom economy of all carboxylation methods are summarized in Table 1 (main paper).

8. References

¹ http://www.voeslauer.com/web/at/quelle/quellanalyse (07.10.2016)

² http://www.heilwassersicheldorf.com/#block-block-9 (5.2.2017)