Supporting Information

Catalytic cascade conversion of furfural to 1,4-pentanediol in

a single reactor

Fei Liu,[‡]^a Qiaoyun Liu,[‡]^{a,b} Jinming Xu,^a Lei Li,^c Yi-Tao Cui,^d Rui Lang,^a Lin Li,^a Yang Su,^a Shu Miao,^a Hui Sun,^a Botao Qiao,^{*a} Aiqin Wang,^{*a} Francois Jerome^{*e} and Tao Zhang^a

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. E-mail: bqiao@dicp.ac.cn, aqwang@dicp.ac.cn
^b University of Chinese Academy of Sciences, Beijing, 100049, PR China
^c Synchrotron Radiation Nanotechnology Center, University of Hyogo, Hyogo 679-5165, Japan.
^d Institute for Solid State Physics, The University of Tokyo, Hyogo 679-5198, Japan.
^e Institut de Chimie des Milieux et Materiaux de Poitiers, CNRS/University of Poitiers, Poitiers 86073, France. E-mail: francois.jerome@univ-poitiers.fr

Experimental Section

Chemical. Furfural, furfuryl alcohol and 3-Acetyl-1-propanol were purchased from Aladdin. *γ*-valerolactone and 1,4-pentanediol were purchased from Sigma-Aldrich. Levulinic acid was purchased from Acros Organic. Deionized water was homemade by a Millipore Autopure system. All reagents were used without further purification. Helium (99.99%), hydrogen (99.99%) and carbon dioxide (99.99%) were purchased from Dalian Special Gases Company.

Catalyst preparation.

1) CMK-3: CMK-3 support was synthesized by a nanocasting method. In detail, 12.0 g of furfuryl alcohol (90 wt%) and 1.2 g of oxalic acid were dissolved in 30.0 g of ethanol.

The solution was then infiltrated into 12.0 g of SBA-15 by incipient wetness impregnation at room temperature, followed by heating in water bath at 40 °C for 8 hours to evaporate the ethanol. The resultant solid was then dried at 80 °C for 8 h in air and heated at 350 °C in N₂ for 4 h. The above infiltration, drying and calcination procedure was repeated twice. Afterwards, the solid was submitted to N₂ atmosphere at 900 °C for 4 h for carbonization, followed with treatment with HF acid (4 wt%) for 24 h to remove the silica framework. The resultant mesoporous carbon was washed completely with water and dried at 80 °C overnight.

The procedure to synthesize the microporous carbon is the same as in method CMK-3 support except that SBA-15 was not added. In detail, 12.0 g of furfuryl alcohol (90 wt%) and 1.2 g of oxalic acid were dissolved in 30.0 g of ethanol. The solution was followed by heating in water bath at 40 °C for 8 hours to evaporate the ethanol. The resultant solid was then dried at 80 °C for 8 h in air and heated at 900 °C in N₂ for 4 h. 2) Ru/CMK-3 was prepared by an impregnation method. Typically, 1 g of CMK-3 was placed in a round-bottom flask. 15 ml of RuCl₃ solution with appropriate Ru containing was added quickly to the flask and the mixture was then subjected to a rotary evaporator to evaporate the solution at 50 °C under vacuum for 2 h. The recovered sample was heated at 300 °C for 3 h under N₂ flow with a flowrate of 20 ml·min⁻¹, and denoted as Ru/CMK-3. Before reaction the Ru/CMK-3 was further subjected to a temperature programmed reduction (TPR) treatment under 10% H₂/He gas from ambient temperature to 200 and 400 °C with a heating rate of 10 °C min⁻¹, and denoted as

Ru/CMK-3-R200 and Ru/CMK-3-R400, respectively. The procedure to prepare Ru/C is the same as in method Ru/CMK-3.

Catalytic performance evaluation. All the reactions were conducted in a 50 mL Parr batch reactor. In a typical experiment, 30 mg Ru/CMK-3 was added to a mixture of H₂O (5 mL) and furfural (100 mg, 1.04 mmol) to make a metal/substrate ratio of 0.57 mol%. This solution was placed inside the autoclave and was flushed with H₂ for several times. Next, the autoclave was pressurized with H₂ to 10 bar and then CO₂ was added up to a total pressure of 40 bar. The reaction mixture was stirred and heated to 80 °C for 20 h (including the time to heat the reactor). After reaction, the autoclave was cooled down to room temperature, vented, and opened. A syringe filter was used to remove the catalyst from the reaction mixture, and the recovered solution was then analyzed by gas chromatography (GC), with *n*-butanol as the internal standard, on Agilent 7890B equipped with an FID detector (270 °C) and an HP-INNOWAX column (30 m x 0.32 mm, 0.5 μ m).

<u>Note</u>: In the present work, we did not attempt to isolate 1,4-PD, mostly because experiments were conducted on a milligram scale. Because we are using water as a solvent, one may envisage (after up-scaling to the gram scale) first the removal of the catalyst by filtration followed by distillation of water which has a lower boiling point than 1,4-PD. According to this strategy, a technical grade 1,4-PD should be obtained using the conditions reported in the entry 4 of table 1. **Characterization techniques.** The actual Ru loadings of various catalysts were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) on an IRIS Intrepid II XSP instrument (Thermo Electron Corporation).

X-ray diffraction (XRD) patterns were collected at a PW3040/60 X' Pert PRO (PANalytical) diffractometer equipped with a copper target (Cu K α , λ = 0.15432 nm), operating at 40 kV and 40 mA. A continuous mode was used for data collecting in the 20 range from 5° to 80° at a scanning speed of 10° min⁻¹.

The acidities of Ru/CMK-3 catalysts used in this work were characterized by the NH₃-TPD which was carried out with a Micromeritics AutoChem II2920. Before each test, 0.1 g sample was placed in a quartz reactor, pretreated in He flow at 473 K or in 10%H₂/He flow at 473 K and 673 K and cooled down in He flow to 373 K. After the saturated adsorption NH₃, the sample was heated at 373 K in He for 45 min to remove the physically adsorbed NH₃. Desorption of NH₃ was conducted in He flow from 373 K to 1073 K at a heating rate of 10 K min⁻¹. The desorbed NH₃ molecules were detected by a mass spectrometry (MS) OminiStar equipped with the software quadstar 32-bit. In the measurement, m/e =16 was monitored to analyze the desorbed NH₃ to avoid the interference of water.

High-angel annual dark-field scan transmission electron microscopy (HAADF-STEM) analyses were performed with a JEOL JEM-2100F microscope operated at 200 kV. And the abreaction-corrected HAADF-STEM images were obtained on a JEM ARM microscope. For all microscopy analysis the samples were ultrasonically dispersed in ethanol and then a drop of the solution was put onto microgrid carbon polymer supported on copper grid.

The synchrotron radiation experiment was performed at the BL14B1 of Japan Atomic Energy Agency/Super Photon ring-8 (JAEA/SPring-8). The pretreatment conditions of in situ X-ray adsorption near edge structure (XANES) measurement was 10%H₂/He reduction at 200 °C and 400 °C, respectively, for 20 min.

Entry	catalyst	Temp	$P(H_2)$	Solvent	Conv.	1.4-PD Viold(9()	1.2-PD	1.5-PD Vield(0()	Ref
		(°C)	(IVIF a)		(70)	r leiu(70)	r leiu(70)	Y leiu (76)	
1	Ru/CMK-3	80	1	H ₂ O	>99	90			This work
2	Pt/HT	150	3	2-PrOH	>99		73	8	Ref 1
3	Cu/LDO	140	6	EtOH	>99		51.2	28.8	Ref 2
4	Pt/CeO ₂	170	1	H ₂ O	>99		65	8	Ref 3
5	Pt/Co ₂ AlO ₄	140	1.5	2-PrOH	>99		16.2	34.9	Ref 4
6	Pd-Ir-ReO _x /SiO ₂	100	6	H ₂ O	>99	5.8	1.4	71.4	Ref 5
7	Rh-Ir-ReO _x /SiO ₂	100	8	H ₂ O	>99	3.4	0.5	71.1	Ref 6

Table S1. Catalytic performance of different catalysts for the conversion furfural to pentanediol

Figure S1: XRD patterns of CMK-3, Ru/CMK-3, Ru/CMK-3-R200 and Ru/CMK-3-R400.

Figure S2: HAADF-STEM images of Ru/CMK-3-R200 (A-E) and the corresponding size

distribution (F).

Figure S3: Typical HAADF-STEM images of Ru/CMK-3-R400 (A-C) and the corresponding size distribution (D).

Figure S4: In situ XANES spectra of Ru/CMK-3-unred, Ru/CMK-3-R200 and Ru/CMK-3-

R400 compared	with l	RuO_2	and	Ru	foil.
---------------	--------	---------	-----	----	-------

Sample	Shell	Ν	R(Å)	$\Delta E_0 (eV)$	$\Delta \delta^2(\text{\AA}^2)$
Ru foil	Ru-Ru	12	2.67		
RuO ₂	Ru-O	6	1.97		
RuCl ₃	Ru-Cl	6	2.38		
Ru/CMK-3-unred	Ru-Ru	1.5	2.73	5.5	0.011
	Ru-Cl	2	2.34	-8	0.007
	Ru-O	3.1	2	6.2	0.007
Ru/CMK-3-R200	Ru-Ru	6.6	2.67	3.2	0.012
	Ru-Cl	2.3	2.38	3.2	0.018
Ru/CMK-3-R400	Ru-Ru	10.2	2.63	-6.5	0.014

Table S2. EXAFS data fitting results of Ru/CMK-3 samples

Catalyst	Amount of acid sites(µmol/g) ^a
Ru/CMK3-R400	205
Ru/CMK3-R200	425
Ru/CMK3-unred	271
CMK3	61
Ru/C	91

Table S3. Acid concentrations of Ru/CMK-3 catalysts

^a Total acid concentrations were determined by the microcalorimetric measurements of ammonia adsorption.

Figure S5: NH₃-TPD profiles of Ru/CMK-3 catalyst

Entry	Reactant	Catalyst	Temp (°C)	Р _{(Н2}) (MPa)	Solvent	Conv. (%)	1.4-PD Yield(%)	Ref
1	Furfural	Ru/CMK-3	80	1	H ₂ O	>99	90	This work
2	LA	Ru-Re/C	140	15	H ₂ O	>99	82	Ref 7
3	LA	Pt-Mo/HAP	130	5	H ₂ O	>99	93	Ref 8
4 ^a	LA	Rh-MoO _x /SiO ₂	80	6	H ₂ O	>99	70	Ref 9
5	GVL	Cu/ZrO ₂	200	6	EtOH	97	96	Ref 10

Table S4. Comparison of the present work with literature reports for the synthesis of 1,4-PD

a: fixed-bed reaction.

Entry	Reactant	Catalyst	Additive	Temp (°C)	Р _(Н2) (MPa)	Solvent	3-AP Yield(%)	Ref
1	Furfural	Ru/CMK-3		60	1	H ₂ O	84	This work
3	LA	Pyrococcus furiosus	sodium phosphate buffer	40	0.5	H ₂ O	51	Ref 11
2	но	NHC-Au-OTf	NBu ₄ OTf	50		H ₂ O	>99	Ref 12
3	но	Na[PtCl ₂ (dmso)(NHC)]		80		H ₂ O	>99	Ref 13
4	H0 + OH H ₂ O ₂	tris(cety1-pyridinium) 12-tungstophosphate		reflux		tBuOH	60	Ref 14
5	H0 + OH H ₂ O ₂	$(\eta^{5}-Ph_{4}C_{4}COH)(CO)_{2}RuCl$	NaCO ₃	90		CHCl ₃	50	Ref 15
6	H0 + OH H ₂ O ₂	Na ₄ H ₃ [SiW ₉ Al ₃ (H ₂ O) ₃ O ₃₇]12H ₂ O		90		H ₂ O	62	Ref 16

 Table S5. Synthesis of 3-AP via several processes

Figure S6: The time-course plot for the conversion of Furfural on various Ru/CMK-3 catalysts. Reaction conditions: T: 353 K, 3MPa CO_2 and 1MPa H₂ (at room temperature), 2 wt% furfural in H₂O, and a metal/substrate ratio of 0.57 mol%.

Figure S7: Recycling test of Ru/CMK3-R200 catalyst. Reaction conditions: 2 wt% furfural in H_2O , 5 mL H_2O , 20h and a metal/substrate ratio of 0.57 mol%.

Figure S8: Catalytic conversion of LA and γ -valerolactone.

Figure S9: Proposed mechanism for 3-AP and 1,4-PD synthesis through a cascade sequence that terminates with the hydrogenation of a pentadienyl cation intermediate.

References

- 1. T. Mizugaki, T. Yamakawa, Y. Nagatsu, Z. Maeno, T. Mitsudome, K. Jitsukawa and K. Kaneda, *ACS Sus. Chem. Eng.*, 2014, **2**, 2243-2247.
- 2. H. Liu, Z. Huang, F. Zhao, F. Cui, X. Li, C. Xia and J. Chen, *Catal. Sci. Technol.*, 2016, **6**, 668-671
- 3. R. Ma, X.-P. Wu, T. Tong, Z.-J. Shao, Y. Wang, X. Liu, Q. Xia and X.-Q. Gong, *ACS Catal.*, 2017, **7**, 333-337.
- 4. W. Xu, H. Wang, X. Liu, J. Ren, Y. Wang and G. Lu, *Chem. Commun.*, 2011, **47**, 3924-3926.
- 5. S. Liu, Y. Amada, M. Tamura, Y. Nakagawa and K. Tomishige, *Green Chem.*, 2014, **16**, 617-626.
- S. Koso, H. Watanabe, K. Okumura, Y. Nakagawa and K. Tomishige, *Appl. Catal. B*, 2012, **111–112**, 27-37.
- 7. L. Corbel-Demailly, B.-K. Ly, D.-P. Minh, B. Tapin, C. Especel, F. Epron, A. Cabiac, E. Guillon, M. Besson and C. Pinel, *ChemSusChem*, 2013, **6**, 2388-2395.
- 8. T. Mizugaki, Y. Nagatsu, K. Togo, Z. Maeno, T. Mitsudome, K. Jitsukawa and K. Kaneda, *Green Chem.*, 2015, **17**, 5136-5139.
- 9. M. Li, G. Li, N. Li, A. Wang, W. Dong, X. Wang and Y. Cong, *Chem. Commun.*, 2014, **50**, 1414-1416.
- 10. X.-L. Du, Q.-Y. Bi, Y.-M. Liu, Y. Cao, H.-Y. He and K.-N. Fan, *Green Chem.*, 2012, **14**, 935-939.
- 11. Y. Ni, P.-L. Hagedoorn, J.-H. Xu, I. W. C. E. Arends and F. Hollmann, *Chem. Commun.*, 2012, **48**, 12056-12058.
- 12. M. Gatto, P. Belanzoni, L. Belpassi, L. Biasiolo, A. Del Zotto, F. Tarantelli and D. Zuccaccia, *ACS Catal.*, 2016, **6**, 7363-7376.
- 13. E. A. Baquero, G. F. Silbestri, P. Gómez-Sal, J. C. Flores and E. de Jesús, *Organometallics*, 2013, **32**, 2814-2826.
- 14. Y. Ishii, T. Yoshida, K. Yamawaki and M. Ogawa, *The Journal of Organic Chemistry*, 1988, **53**, 5549-5552.
- 15. H. M. Jung, J. H. Choi, S. O. Lee, Y. H. Kim, J. H. Park and J. Park, *Organometallics*, 2002, **21**, 5674-5677.
- 16. J. Wang, L. Yan, G. Qian, S. Li, K. Yang, H. Liu and X. Wang, *Tetrahedron*, 2007, **63**, 1826-1832.