Supplementary Information

Efficient and Selective Oxidation of Toluene to Benzaldehyde on Manganese Tungstate Nanobars: A Noble Metal-Free Approach

Diptangshu Datta Mal, Santimoy Khilari, and Debabrata Pradhan*

Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, W. B., India.

*Corresponding author Tel: +91 3222 281798 Fax: +91 3222 282274 *E-mail:* deb@matsc.iitkgp.etnet.in

Entry	Catalyst	Temp.	Oxidant	Condition	$C_{T}^{a}(\%)$	S _{BAD} ^b (%)	Ref.
1	[Cu(CNMP) ₂ .H ₂ O]	70	H ₂ O ₂	Heated under atmospheric pressure	65.5	35	1
2	V ₂ O ₅ Bulk Material	360	O ₂	Tubular quartz fixed-bed micro- reactor	58.3	58.9	2
3	V ₂ O ₅ Nanobelts	340	O ₂	Tubular quartz fixed-bed micro- reactor	33.6	49.1	2
4	Co ₄ Al oxide	70	TBHP	Heated under atmospheric pressure	8.2	77.6	3
5	Cu/Al ₂ O ₃	190	O ₂	Heated in pressurised autoclave	2.5	85.7	4
6	Cu/SnCl ₂	120	air	Heated in pressurised autoclave	18.5	49.2	5
7	V ₂ O ₅ -ZrO ₂	57	air	Heated in a U-tube fixed-bed micro- reactor	24	33	6
8	V_2O_5/Ag_2O	400	O ₂	Tubular quartz fixed-bed micro- reactor	30.4	9.5	7
9	V-Ag-Ni-O	400	air	Heated in a U-tube fixed-bed micro- reactor	21	76	8
10	Cu/ZSM-5	180	H ₂ O ₂	Heated in pressurised autoclave	96.4	3.4	9
11	Au-Pd/TiO ₂	80	TBHP	Heated under atmospheric pressure	5.3	32	10
12	Cs-PMA	R.T.	TBHP	Heated under atmospheric pressure	1.1	97	11
13	Ag–Cu–BTC	160	O ₂	Heated in pressurised autoclave	20.1	90.6	12
14	V-Mo-Fe-O	80	H_2O_2	Heated under atmospheric pressure	40.3	84.5	13
15	Ag-WO ₃	80	H ₂ O ₂	Heated under atmospheric pressure	42	93	14
16	MnWO ₄ NB	80	H_2O_2	Heated under atmospheric pressure	59.5	90	This Work

Table S1. Comparative literature survey on direct oxidation of toluene to benzaldehyde with different heterogeneous catalysts.

 ${}^{a}C_{T}$ = Conversion rate of toluene, ${}^{b}S_{BAD}$ = Selectivity of benzaldehyde

Figure S1. EDAX spectrum of MnWO₄ NBs and its elemental composition (atomic %)

Figure S2. EDAX spectrum of MnWO₄ NFs and its elemental composition (atomic %)

Figure S3. N₂ adsorption/desorption isotherms of (a) MnWO₄ NBs and (b) MnWO₄ NFs at 77K

Figure S4. Zeta potential measurement of MnWO₄ NBs via DLS method

Figure S5. Zeta potential measurement of MnWO₄ NFs via DLS method

Figure S6. NMR analysis of crude reaction mixture showing aldehyde peak at 10.02 ppm

Figure S7. Product profile obtained from oxidation of toluene in terms of GC response time

Figure S8. Mass spectra of benzaldehyde obtained from GC-MS analysis at retention time of 8.43 min

Figure S9. (a) Toluene conversion (b) Benzaldehyde selectivity for a typical reaction under optimal condition (\blacksquare) with 3 eq. H₂O₂, (\blacksquare) with 3 eq. H₂O₂ added in every 6 h after 12 h.

Figure S10. Plausible reaction pathway for the generation of additional by-product, i.e., o-cresol.

Figure S11. Recyclability test of oxidation of toluene to benzaldehyde by MnWO₄ NBs catalyst up to 5 catalytic cycle (\blacksquare) Toluene conversion and (\blacksquare) Selectivity towards benzaldehyde; Reaction Parameters: Toluene = 0.2 g, H₂O₂ conc. = 3eq., Catalyst Loading = 0.01 g, Solvent = 8 mL CH₃CN, Temperature = 60°C, Time = 18 h.

Figure S12. XRD pattern of recovered MnWO₄ NBs catalyst after 5 catalytic cycles

Figure S13. TEM analysis of recovered MnWO₄ NBs catalyst after 5 catalytic cycles

References

- 1 S. S. Lapari and S. Parham, Int. J. Eng. Sci. Invent., 2013, 2, 62–67.
- 2 X. Li, S. Ye, J. Zhao, L. Li, L. Peng and W. Ding, *Chinese J. Catal.*, 2013, **34**, 1297–1302.
- 3 W. Zhou, K. Huang and M. Cao, *React. Kinet. Mech. Catal.*, 2015, 341–353.
- 4 F. Wang, J. Xu, X. Li, J. Gao, L. Zhou and R. Ohnishi, *Adv. Synth. Catal.*, 2005, **347**, 1987–1992.
- 5 K. Rajurkar, N. Kulkarni, V. Rane and R. Shrivastava, *Int. J. Chem. Sci.*, 2011, 9, 545–552.
- 6 J. Ge, M. Xue, Q. Sun, A. Auroux and J. Shen, J. Mol. Catal. A Chem., 2007, 278, 209–214.
- 7 Zhang Hui-Liang, Zhong Wei, Duan Xiang, J. Catal., 1991, 437, 426–437.
- 8 M. Xue, J. Ge, H. Zhang and J. Shen, *Appl. Catal. A Gen.*, 2007, **330**, 117–126.
- 9 N. Viswanadham, S. K. Saxena and A. H. Al-muhtaseb, *Mater. Today Chem.*, 2017, **3**, 37–48.
- 10 H. Liu and Q. Yang, J. Mater. Chem., 2011, 21, 11961–11967.
- 11 V. Balaga, J. Pedada, H. B. Friedrich and S. Singh, *Journal Mol. Catal. A, Chem.*, 2016, **425**, 116–123.
- 12 Z. Sun, G. Li, Y. Zhang, H. O. Liu and X. Gao, Catal. Commun., 2015, 59, 92–96.
- 13 H. Xia, Z. Liu, Y. Xu, J. Zuo and Z. Qin, *Catal. Commun.*, 2016, **86**, 72–76.
- 14 S. Ghosh, S. S. Acharyya, D. Tripathi and R. Bal, J. Mater. Chem. A, 2014, 2, 15726–15733.