Impregnated Palladium on Magnetite as Water Compatible Catalyst for the Cycloisomerization of Alkynoic Acid Derivatives

Beatriz Saavedra,^a Juana M. Pérez,^a María J. Rodríguez-Álvarez,^b Joaquín García-Álvarez,^{b*} Diego J. Ramón^{a*}

Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, E 03080-Alicante, Spain

garciajoaquin@uniovi.es

<u>djramon@ua.es</u>

Table of Contents

I. TEM images of the catalyst	S1
II. Kinetic Plots	S1
III. Gram-scale reaction	S2
IV. Characterization data	\$3
V. References	S6
VI. Copies of ¹ H and ¹³ C NMR	S7

I. TEM images of the catalyst

Image 1. TEM images of PdO-Fe₃O₄ catalyst before (A) and after (B) carrying out the reaction.

II. Kinetic Plots

Figure S1. Plot time-yield product 2a at 25 °C.

Figure S2. Plot time-yield product 2a and 3a at 90 °C.

III. Gram-scale reaction

Figure S3. ¹H NMR gram-scale reaction crude (product **3a**).

IV. Characterization data

2,2-Dimethylpent-4-ynoic acid (**1b**).¹ Orange oil; $t_R = 7.50 \text{ min}$; $R_f = 0.33$ (Hexane/AcOEt: 3/2); IR (ATR) v 2971, 2875, 1699, 1387, 1366, 1224, 1082, 969, 751 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 2.40 (d, J = 2.7 Hz, 2H, $H_2\text{CC}\equiv\text{CH}$), 1.97 (t, J = 2.7 Hz, 1H, C \equiv CH), 1.25 (s, 6H, CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 182.8, 89.5, 70.8, 41.0, 29.4, 24.8, 24.4 ppm; MS (EI, 70 eV): m/z 125 (M⁺-1, 13%), 111 (100), 79 (27), 59 (30).

5-Phenylpent-4-ynoic acid (**1e**).² Brown solid; $t_R = 12.10 \text{ min}$; $R_f = 0.30$ (Hexane/AcOEt: 1/1); m.p. 84-86 °C; IR (ATR) *v* 2923, 1693, 1434, 1301, 1211, 1097, 917, 754, 690 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 7.35–7.30 (m, 2H, ArH), 7.25–7.20 (m, 3H, ArH), 2.70–2.60 (m, 4H, *CH*₂*CH*₂) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 177.8, 131.6, 128.2, 127.8, 123.4, 87.6, 81.3, 33.4, 15.1 ppm; MS (EI, 70 eV): *m*/*z* 174 (M⁺, 47%), 173 (12), 147, (10), 146 (93), 131 (30), 129 (41), 128 (100), 127 (46), 117 (19), 116 (16), 114 (89), 89 (19), 78 (10), 77 (19), 51 (13).

N-tosylpent-4-ynamide (1f).³ White solid; $t_R = 15.63 \text{ min}$; $R_f = 0.36$ (Hexane/AcOEt: 2/1); m.p. 119-123 °C; IR (ATR) *v* 3272, 2360, 1727, 1434, 1413, 1330, 1160, 1120, 1079, 856, 817, 686, 665 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 8.75 (s, 1H, NH), 7.95 (d, *J* = 8.4 Hz, 2H, ArH), 7.35 (d, *J* = 8.4 Hz, 2H, ArH), 2.60–2.35 (m, 7H, 2CH₂ and CH₃), 1.99 (t, *J* = 2.5 Hz, 1H, C≡CH) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 169.1, 145.5, 135.5, 129.8, 128.6, 81.9, 70.2, 35.2, 21.9, 13.8 ppm; MS (EI, 70 eV): *m/z* 251 (M⁺, 7%), 187 (37), 186 (13), 155 (27), 92 (10), 91 (100), 65 (18).

5-Methylenedihydrofuran-2(*3H*)**-one** (**2a**).⁴ Colourless oil; $t_R = 5.25 \text{ min}$; $R_f = 0.43$ (Hexane/AcOEt: 4/1); IR (ATR) *v* 1702, 1398, 1366, 1162, 608 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 4.75 (dd, *J* = 4.6, 2.1 Hz, 1H, C=CH₂), 4.32 (dt, *J* = 2.1, 1.8 Hz, 1H, C=CH₂), 2.95–2.85 (m, 2H, CH₂CO₂H), 2.70–2.65 (m, 2H, CH₂CH₂CO₂H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 175.0, 155.7, 88.9, 28.2, 25.2 ppm; MS (EI, 70 eV): *m/z* 98 (M⁺, 100%), 70 (30), 56 (47), 55 (22).

4-Oxopentanoic acid (**3a**).⁵ Colourless oil; $t_R = 7.77 \text{ min}$; $R_f = 0.36$ (Hexane/AcOEt; 3/2); IR (ATR) *v* 2927, 1702, 1631, 1399, 1353, 1206, 1164 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 9.25 (s, 1H, COOH), 2.77 (t, *J* = 6.4 Hz, 2H, CH₂CO₂H), 2.64 (t, *J* = 6.4 Hz, 2H, CH₂CH₂CO₂H), 2.21 (s, 3H, COCH₃) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 206.8, 178.4, 37.8, 29.9, 27.9 ppm; MS (EI, 70 eV): *m/z* 116 (M⁺, 46%), 101 (18), 99 (15), 73 (32), 56 (100), 55 (44). **3,3-Dimethyl-5-methylenedihydrofuran-2**(*3H*)**-one** (**2b**).⁶ Orange oil; $t_R = 5.03 \text{ min } R_f = 0.56$ (Hexane/AcOEt: 3/2); IR (ATR) *v* 2969, 2932, 1797, 1705, 1703, 1672, 1080, 969 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) $\delta_H 4.76$ (s, 1H, C=CH₂), 4.33 (s, 1H, C=CH₂), 2.70 (s, 2H, CH₂C(CH₃)₂), 1.31 (s, 6H, CH₃CH₃CCO₂H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 180.3, 153.4, 89.4, 41.0, 40.4, 24.7 ppm; MS (EI, 70 eV): *m*/*z* 126 (M⁺, 37%), 83 (37), 70 (16), 56 (100), 55 (16).

2,2-Dimethyl-4-oxopentanoic acid (**3b**).⁷ Orange oil; $R_f = 0.3$ (Hexane/AcOEt: 4/1); IR (ATR) *v* 2975, 2875, 1784, 1705, 1475, 1361, 1135, 1055, 906 cm⁻¹; ¹H NMR (300 MHz, acetone-d₆) $\delta_H 2.78$ (s, 2H, CH₂CO), 1.34 (s, 3H, COCH₃), 1.21 (s, 6H, CH₃CH₃CCO₂H) ppm; ¹³C NMR (75 MHz, acetone-d₆) $\delta_C 210.1$, 178.9, 53.1, 49.4, 40.2, 25.9 ppm; MS (EI, 70 eV): *m/z* 126 (M⁺- H₂O, 10%), 87 (12), 85 (24), 59 (24), 58 (15), 56 (29), 55 (11), 43 (100), 41 (16).

5-Oxohexanoic acid (**3c**).⁴ Orange oil; $t_R = 8.52 \text{ min}$; $R_f = 0.27$ (Hexane/AcOEt; 3/2); IR (ATR) *v* 3160, 2962, 1703, 1409, 1363, 1155 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 9.82 (s, 1H, CO₂H), 2.55 (t, *J* = 7.2 Hz, 2H, CH₂CO), 2.40 (t, *J* = 7.2 Hz, 2H, CH₂CO₂H), 2.16 (s, 3H, COCH₃), 1.90 (q, *J* = 7.2 Hz, 2H, CH₂CH₂CO₂H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 208.4, 179.3, 42.4, 33.0, 30.0, 18.6 ppm; MS (EI, 70 eV): *m*/*z* 130 (M⁺, 2%), 115 (10), 113 (10), 112 (100), 87 (32), 84 (29), 71 (18), 70 (55), 60 (29), 58 (21), 55 (27).

(**Z**)-**5-benzylidenedihydrofuran-2(3***H***)-one (2e).⁸ Pale yellow oil; t_R = 12.65 min; R_f = 0.60 (Hexane/AcOEt: 1/1); IR (ATR)** *v* **2925, 1798, 1681, 1493, 1448, 1225, 1776, 1097, 939, 693 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) \delta_H 7.55 (d, J = 7.4 Hz, 2H, ArH), 7.32 (t, J = 7.4 Hz, 2H, ArH), 7.20 (t, J = 7.4 Hz, 1H, ArH), 5.55 (br s, 1H, C=CH), 3.10–2.95 (m, 2H, CH₂CO), 2.75–2.65 (m, 2H, CH₂CH₂CO) ppm; ¹³C NMR (75 MHz, CDCl₃) \delta_C 175.1, 148.3, 134.1, 128.7, 128.5, 127.0, 105.2, 27.2, 26.6 ppm; MS (EI, 70 eV):** *m/z* **174 (M⁺, 100%), 146 (22), 145 (32), 131 (12), 118 (43), 117 (12), 91 (25), 90 (53), 89 (30), 63 (11).**

4-Oxo-5-phenylpentanoic acid (**3e**).⁹ Orange oil; $t_R = 12.84$ min; $R_f = 0.33$ (Hexane/AcOEt: 3/2); IR (ATR) v 3029, 2920, 1703, 1596, 1399, 1158, 741, 698 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 7.40–7.20 (m, 5H, ArH), 3.74 (s, 2H, CH₂Ph), 2.75 (t, J = 6.2 Hz, 2H, H₂CCO), 2.61 (t, J = 6.2 Hz, 2H, H_2 CCOOH) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 206.5, 178.1, 134.0, 129.6, 128.9, 127.3, 50.2, 36.3, 27.9 ppm; MS (EI, 70 eV): m/z 192 (M⁺, 9%), 101 (98), 92 (92), 91 (100), 89 (12), 73 (30), 65 (32), 63 (10), 55 (31).

5-Methylene-1-tosylpyrrolidin-2-one (**2f**).¹⁰ White solid; $t_R = 16.04 \text{ min } R_f = 0.40$ (Hexane/AcOEt: 3/2); IR (ATR) *v* 2918, 2850, 1708, 1646, 1353, 1160, 1132, 1085 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 7.92 (d, *J* = 8.4 Hz, 2H, ArH), 7.32 (d, *J* = 8.4 Hz, 2H, ArH), 5.27 (s, 1H, C=CH), 5.13 (s, 1H, C=CH), 2.55–2.45 (t, *J* = 7.0 Hz, 2H, H₂CCO), 2.43 (s, 3H), 2.38 (t, *J* = 7.0 Hz, 2H, H₂CC).ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 170.8, 145.0, 139.0, 136.6, 129.5, 128.6, 111.3, 33.8, 30.6, 21.8 ppm; MS (EI, 70 eV): *m/z* 236 (M⁺-CH₃, 2%), 201 (25), 200 (31), 172 (19), 155 (11), 92 (10), 91 (100), 89 (10), 65 (37), 55 (18).

4-Oxo-*N***-tosylpentanamide** (**3f**). Orange solid; $t_R = 16.29 \text{ min}$; $R_f = 0.20$ (Hexane/AcOEt: 1/1); m.p. 148-151 °C; IR (ATR) *v* 3129, 2917, 1699, 1599, 1452, 1380, 1336, 1166, 1130, 1087, 862, 813, 659 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 8.87 (s, 1H, CONH), 7.92 (d, *J* = 8.2 Hz, 2H, ArH), 7.33 (d, *J* = 8.2 Hz, 2H, ArH), 2.75 (t, *J* = 6.1 Hz, 2H, CH₂CO), 2.51 (t, *J* = 6.1 Hz, 2H, CH₂CONH), 2.43 (s, 3H, ArCH₃), 2.15 (s, 3H, COCH₃) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 207.7, 170.4, 145.2, 135.8, 129.8, 128.5, 37.6, 30.2, 30.0, 21.9 ppm; MS (EI, 70 eV): *m*/*z* 155 (M⁺-C₅H₈O₂N, 20%), 108 (100), 107 (14), 91 (54), 65 (15), 43 (29). HRMS calcd. (%) for C₁₂H₁₅NO₄S-C₅H₆O₂: 171.0354; found: 171.0352.

Methyl 5-methylene-2-oxo-1-tosylpyrrolidine-3-carboxylate (**2g**).³ Yellow oil; $t_R = 15.45$ min; $R_f = 0.33$ (Hexane/AcOEt: 2/1); IR (ATR) *v* 3252, 2957, 2922, 2854, 1734, 1715, 1437, 1348, 1274, 1265, 1168, 1085, 813, 662 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 7.94 (d, *J* = 8.4 Hz, 2H, ArH), 7.36 (d, *J* = 8.4 Hz, 2H, ArH), 5.55 (dd, *J* = 3.8, 2.0 Hz, 1H, C=CH₂), 4.65 (dd, *J* = 3.8, 2.0 Hz, 1H, C=CH₂), 3.73 (s, 3H, OCH₃), 3.53 (dd, *J* = 9.9, 7.6 Hz, 1H, HCCON), 3.15–2.85 (m, 2H, *H*₂*C*-C=CH₂), 2.46 (s, 3H, ArCH₃) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 168.5, 167.8, 145.8, 138.5, 134.8, 129.7, 128.2, 95.2, 53.1, 47.2, 30.0, 21.7 ppm; MS (EI, 70 eV): *m*/*z* 251 (M⁺+1-C₂H₃O₂, 5%), 187 (33), 186 (13), 155 (25), 92 (10), 91 (100), 65 (17).

Methyl 4-oxo-2-(tosylcarbamoyl)pentanoate (**3g**). Orange oil; $t_R = 12.58$ min; $R_f = 0.20$ (Hexane/AcOEt: 3/2); IR (ATR) *v* 3248, 1743, 1713, 1596, 1436, 1347, 1166, 1084, 813, 660 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 9.98 (s, 1H, NH), 7.92 (d, J = 8.3 Hz, 2H, ArH), 7.32 (d, J = 8.3 Hz, 2H, ArH), 3.74 (t, J = 6.1 Hz, 1H, COCHCO), 3.68 (s, 3H, H₃CO), 3.10–3.05 (m, 2H, H₂CCO), 2.43 (s, 3H, ArCH₃), 2.14 (s, 3H, COCH₃) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 205.8, 169.3, 165.8, 145.2, 135.5, 129.7, 128.6, 53.4, 47.5, 41.1, 29.7, 21.8 ppm; MS (EI, 70 eV): m/z 155 (M⁺-C₇H₁₀O₄N, 30%), 125 (10), 108 (100), 91 (61), 87 (15), 65 (14). HRMS calcd. (%) for C₁₄H₁₇NO₆S-C₇H₈O₂: 171.0354; found: 171.0353. **Methyl 3-allyl-5-methylene-2-oxo-1-tosylpyrrolidine-3-carboxylate** (**2h**).³ Yellow oil ; $t_R = 17.38$ min; $R_f = 0.53$ (Hexane/AcOEt: 2/1); IR (ATR) v 2958, 1759, 1736, 1655, 1435, 1368, 1258, 1172, 1087, 813, 669 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 7.92 (d, J = 8.4 Hz, 2H, ArH), 7.34 (d, J = 8.4 Hz, 2H, ArH), 5.55–5.40 (m, 2H, H_2 C=CH), 5.05–5.00 (m, 2H, H_2 C=C), 4.60 (d, J = 1.7 Hz, 1H, H_2 C=CH), 3.60 (s, 3H, OCH₃), 3.04 (dt, J = 15.9, 1.5 Hz, 1H, H_2 C-C=CH₂), 2.71 (dt, J = 15.9, 1.5 Hz, 1H, H_2 C-C=CH₂), 2.65–2.50 (m, 2H, H_2 C-CH=CH₂), 2.45 (s, 3H, ArCH₃) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 171.2, 169.8, 145.8, 138.3, 131.0, 129.6, 128.2, 126.5, 120.8, 94.9, 54.9, 53.1, 37.9, 21.8, 16.9 ppm; MS (EI, 70 eV): m/z 349 (M⁺, 4%), 308 (46), 155 (64), 139 (10), 108 (25), 95 (18), 91 (100), 67 (10), 65 (21), 43 (18).

Ethyl 3-methyl-5-methylene-2-oxo-1-tosylpyrrolidine-3-carboxylate (**2i**).³ Yellow oil ; $t_R = 16.64$ min; $R_f = 0.46$ (Hexane/AcOEt: 2/1); IR (ATR) *v* 2983, 2930, 2850, 1757, 1733, 1655, 1369, 1173, 1085, 1041, 813, 665 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 7.94 (d, J = 8.4 Hz, 2H, ArH), 7.34 (d, J = 8.4 Hz, 2H, ArH), 5.54 (dd, J = 3.6, 1.9 Hz, 1H, C=CH₂), 4.60 (dd, J = 3.6, 1.9 Hz, 1H, C=CH₂), 4.10–3.90 (m, 2H,OC*H*₂CH₃), 3.07 (d, J = 15.5 Hz, 1H, H_2C -C=CH₂), 2.44 (s, 3H, ArCH₃), 1.38 (s, 3H, CCH₃), 1.05 (t, J = 7.1 Hz, 3H, OCH₂CH₃) ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 172.5, 170.2, 145.8, 138.3, 135.0, 129.7, 128.3, 95.0, 62.2, 51.4, 39.4, 21.9, 19.8, 13.9 ppm; MS (EI, 70 eV): *m/z* 337 (M⁺, 4%), 264 (100), 200 (41), 155 (49), 91 (97), 65 (17).

Ethyl (*Z*)-3-methyl-2-oxo-5-propylidene-1-tosylpyrrolidine-3-carboxylate (2j).¹¹ Pale yellow oil ; $t_R = 17.36 \text{ min}$; $R_f = 0.5$ (Hexane/AcOEt: 2/1); IR (ATR) v 2977, 2935, 1754, 1734, 1691, 1363, 1165, 812, 664, 539 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H 7.90 (d, J = 8.2 Hz, 2H, ArH), 7.32 (d, J = 8.2 Hz, 2H, ArH), 5.19 (t, J = 7.2 Hz, 1H, C=CHEt), 4.05–3.95 (m, 2H, COCH₂CH₃), 3.06 (dd, J = 13.2, 1.1 Hz, 1H, H_2 CC=CHEt), 2.50–2.25 (m, 6H, ArCH₃ and H_2 CC=CHEt), 1.31 (s, 3H, CCH₃), 1.07 (m, 6H, COCH₂CH₃ and CHCH₂CH₃).ppm; ¹³C NMR (75 MHz, CDCl₃) δ_C 174.4, 170.4, 145.4, 135.9, 129.9, 128.8, 121.9, 62.1, 53.5, 43.7, 23.3, 21.9, 19.2, 14.3, 14.0 ppm; MS (EI, 70 eV): m/z 365 (M⁺, 2%), 292 (51), 210 (13), 155 (32), 136 (39), 92 (12), 91 (100), 65 (26).

V. References

- 1 T. Welsch, H.-A. Tran and B. Witulski, Org. Lett., 2010, 12, 5644.
- 2 T. Suzuka, Y. Okada, K. Ooshiro and Y. Uozumi, Tetrahedron, 2010, 66, 1064.
- 3 N. A. Espinosa-Jalapa, D. Ke, N. Nebra, L. Le Goanvic, S. Mallet-Ladeira, J. Monot, B. Martin-Vaca and D. Bourissou, *ACS Catal.*, 2014, **4**, 3605.
- 4 J. Aleman, V. del Solar, L. Cubo, A. G. Quiroga and C. Navarro Ranninger, *Dalton Trans.*, 2010, 39, 10601.
- 5 K. Belger and N. Krause, Org. Biomol. Chem., 2015, 13, 8556.

- 6 A. Nagendiran, O. Verho, C. Haller, E. V. Johnston and J.-E. Bäckvall, J. Org. Chem., 2014, 79, 1399.
- 7 R. Jaouhari, B. Maillard, C. Filliatre and J.-J. Villenave, Synthesis, 1982, 1982, 760.
- 8 H. Harkat, A. Y. Dembelé, J.-M. Weibel, A. Blanc and P. Pale, Tetrahedron, 2009, 65, 1871.
- 9 K. Masatoshi, S. Toshio and F. Tamotsu, Bull. Chem. Soc. Jpn., 1988, 61, 3255.
- 10 M. M. Lorion, F. J. S. Duarte, M. J. Calhorda, J. Oble and G. Poli, Org. Lett., 2016, 18, 1020.
- 11 M. J. Rodríguez-Álvarez, C. Vidal, S. Schumacher, J. Borge and J. García-Álvarez, *Chem. Eur. J.*, 2017, **23**, 3425.

VI. Copies of ¹H and ¹³C NMR

S21

2j ¹H NMR (300 MHz, CDCl₃)

2j ¹³C NMR (75 MHz, CDCl₃)

