Supporting Information (SI)

Propylene Carbonate and γ-Valerolactone as Green Solvents Enhance Sn(IV)-

Catalysed Hydroxymethylfurfural (HMF) Production from Bread Waste

Iris K.M. Yu^a, Daniel C.W. Tsang^{a,*}, Alex C.K. Yip^b, Andrew J. Hunt^c, James Sherwood^d, Jin Shang^e,

Hocheol Song^f, Yong Sik Ok^{g,#}, Chi Sun Poon^a

^aDepartment of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

^bEnergy and Environmental Catalysis Group, Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand

^cMaterials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

^dGreen Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK

eSchool of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

^fDepartment of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea

^gKorea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea

*Corresponding author: <u>dan.tsang@polyu.edu.hk</u>

[#]Co-corresponding author: <u>yongsikok@korea.ac.kr</u>

Fraction	Product concentration (mg/ml)							
	Disaccharide	Glucose	Fructose	Levoglucosan	Formic acid	Levulinic acid	HMF	Furfural
Shaken mixture	0.28	8.18	5.26	0.42	1.32	2.64	6.84	0.94
Upper layer	0.30	9.06	5.80	0.44	1.36	2.66	6.45	0.91
Lower layer	0.28	7.50	4.84	0.42	1.36	2.70	7.23	0.97
120°C fo	or 10 min.							

Table S1. Distribution of products after SnCl₄-catalysed conversion of bread waste in PC/H₂O at

Figure S1. Controls experiments without substrate (conditions: 55.5 mM SnCl_4 in solvent mixture (1:1 v/v) or water at 120°C for 10 min).

Figure S2. Records of in-vessel pressure and temperature during reaction in (a) PC/H_2O and (b) GVL/H_2O .

Figure S3. Records of in-vessel pressure and temperature during reaction in PC/H₂O (1:1 v/v) *with* pressure release midway: (a) heating 5 wt/v% substrate with 55.5 mM SnCl₄ at 120°C for 2.5 min; after cooling and opening the vessel for pressure release, (b) the mixture was heated again at 120°C for 2.5 min. Ramping was completed in 5 min.

Figure S4. Records of in-vessel pressure and temperature during reaction in PC/H₂O (1:1 v/v) *without* pressure release midway: (a) heating 5 wt/v% substrate with 55.5 mM SnCl₄ at 120°C for 2.5 min; after cooling, (b) the mixture was heated again at 120°C for 2.5 min. Ramping was completed in 5 min.

Figure S5. Total product yields resulted from the catalytic conversion of bread waste in different solvent mixtures (1:1 v/v) (conditions: 5 wt/v% substrate and 55.5 mM SnCl₄ at 120 °C; yield = product_{Cmol}/substrate_{Cmol} × 100%).