Supplementary Information

Hydrochar supported bimetallic Ni-Fe alloy nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance

Chao Gai^{a,b}, Fang Zhang^c, Tianxue Yang^d, Zhengang Liu^{a,b*}, Wentao Jiao^{a,b*}, Nana

Peng^{a,b}, Tingting Liu^{a,b}, Qianqian Lang^{a,b}, Yu Xia ^{a,b}

Affiliations

^aResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18

Shuangqing Road, Beijing 100085, China

^bNational Engineering Laboratory for VOCs Pollution Control Material &

Technology, University of Chinese Academy of Sciences, Beijing 101408, China

^cAnalytical and Testing Center, Beijing Institute of Technology, Beijing 100081,

China

^dState Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China

- **Figure S1.** Fabrication strategy for preparation of the hydrochar-supported, ironincorporated nickel-based catalysts and catalytic gasification test.
- Figure S2. N₂ adsorption/desorption isotherms (a) and pore-size distributions (b) of Ni_{0.5}/HC-700, Ni_{0.05}Fe_{0.05}/HC-700, Ni_{0.25}Fe_{0.25}/HC-700 and Ni_{0.25}Fe_{0.25}/HC-900.
- **Figure S3.** SEM images and the relative spatial distribution of elemental Ni and Fe in the fresh (A) and spent (B) catalyst of Ni_{0.05}Ni_{0.05}/HC-700.
- Figure S4. Particle size distribution of the metal nanoparticles in the catalyst of Ni_{0.05}Ni_{0.05}/HC-700.
- Figure S5. TEM images of the fresh (a, b) and spent (c, d) catalysts of Ni_{0.05}Fe_{0.05}/HC-900 and Ni_{0.25}Fe_{0.25}/HC-900, respectively.
- **Table S1.** Surface areas, total pore volumes and average pore diameters of $Ni_{0.5}$ /HC-700, $Ni_{0.05}Fe_{0.05}$ /HC-700, $Ni_{0.25}Fe_{0.25}$ /HC-700 and $Ni_{0.25}Fe_{0.25}$ /HC-900.
- Table S2. Effect of concentrations of precursory metal salts and calcination

 temperature on the crystallinity indexes of the fresh and reacted catalysts.

Table S3. Metal loading on the monometallic and bimetallic catalysts.

 Table S4.
 Carbon deposition rates for the reacted monometallic and bimetallic catalysts.

Figure S1.Fabrication strategyforpreparation of the hydrochar-supported, ironincorporated nickel-based catalysts and catalytic gasification test.

Figure S2. N_2 adsorption/desorption isotherms (a) and pore-size distributions (b) of

$Ni_{0.5}/HC-700$, $Ni_{0.05}Fe_{0.05}/HC-700$, $Ni_{0.25}Fe_{0.25}/HC-700$ and

Figure S3. SEM images and the relative spatial distribution of elemental Ni and Fe in

the fresh (A) and spent (B) catalyst of Ni_{0.05}Ni_{0.05}/HC-700.

Figure S4. Particle size distribution of the metal nanoparticles in the catalyst of $Ni_{0.05}Ni_{0.05}/HC$ -700.

Ni_{0.05}Fe_{0.05}/HC-900 and Ni_{0.25}Fe_{0.25}/HC-900, respectively

Figure S5. TEM images of the fresh (a, b) and spent (c, d) catalysts of

Table S1. Surface areas, total pore volumes and average pore diameters of $\rm Ni_{0.5}/\rm HC\textsuperscene}$

Catalyst	$S_{\rm BET}$ (m ₂ ·g-	V _{pore}	AD _{pore} ,
	¹)	$(cm^{3}.g^{-1})$	nm
Ni _{0.5} /HC-700	320.91	0.2201	2.7432
$Ni_{0.05}Fe_{0.05}/HC$ -700	373.31	0.2465	2.6411
$Ni_{0.25}Fe_{0.25}/HC$ -700	323.99	0.2453	3.0289
$Ni_{0.25}Fe_{0.25}/HC$ -900	147.68	0.2395	6.4874

700, $Ni_{0.05}Fe_{0.05}/HC$ -700, $Ni_{0.25}Fe_{0.25}/HC$ -700 and $Ni_{0.25}Fe_{0.25}/HC$ -900.

Catalyst	Temp. (°C)	CI_{xrd-f} (%)	CI _{xrd-r} (%)
Ni _{0.05} Fe _{0.05} /HC	500	6.5	8.9
	700	8.3	12.7
	900	11.9	10.6
Ni _{0.1} /HC	500	11.2	13.5
	700	9.7	17.6
	900	12.9	9.9
Ni _{0.25} Fe _{0.25} /HC	500	18.2	23.5
	700	17.9	19.8
	900	16.7	10.9
Ni _{0.5} /HC	500	12.4	14.3
	700	13.9	15.8
	900	25.2	14.7

Table S2. Effect of concentrations of precursory metal salts and calcination

 temperature on the crystallinity indexes of the fresh and reacted catalysts.

Catalyst	Temp. (°C)	Ni (wt.%)	Fe (wt.%)
Ni _{0.05} Fe _{0.05} /HC	<mark>500</mark>	0.71	0.82
	<mark>700</mark>	<mark>0.93</mark>	1.06
	<mark>900</mark>	1.07	1.15
Ni _{0.1} /HC	<mark>500</mark>	1.38	
	<mark>700</mark>	1.76	4 C
	<mark>900</mark>	1.95	
Ni _{0.25} Fe _{0.25} /HC	<mark>500</mark>	2.73	3.12
	<mark>700</mark>	3.35	3.93
	<mark>900</mark>	3.89	4.68
Ni _{0.5} /HC	<mark>500</mark>	<mark>4.88</mark>	
	<mark>700</mark>	6.25	
	<mark>900</mark>	7.13	•

Table S3. Metal loading on the monometallic and bimetallic catalysts.

Catalyst	Temp.	Rate of coke deposition
	(°C)	(wt.%)
Ni _{0.05} Fe _{0.05} /HC	500	16.3
	700	13.7
	900	14.4
Ni _{0.1} /HC	500	17.9
	700	14.2
	900	16.7
Ni _{0.25} Fe _{0.25} /HC	500	3.9
	700	2.8
	900	3.1
Ni _{0.5} /HC	500	5.3
	700	3.2
	900	4.7

 Table
 S4.
 Carbon deposition rates for the reacted monometallic and bimetallic catalysts.

^aReaction conditions: reaction temperature: 500-900 °C; steam flow rate: 0.05 g min⁻¹;

reaction time: 0.5 h; mass of catalyst: 300 mg.