Supplementary information to "Effect of different Brønsted acids on the hydrothermal conversion of fructose to HMF"

Computational determination of the proton concentration at elevated temperature

In order to determine the pK_a at 140°C ($pK_{a140^\circ C}$), we used the model developed by Helgeson³⁴, in which the pK_a is calculated from the free energy of dissociation. Helgeson also provides a set of parameters for different acids. The selection that is used here is listed in Table 1. Where no data was available, $pK_{a25^\circ C}$ was taken from literature and $pK_{a140^\circ C}$ was estimated by assuming that pK_a values that are similar at 25°C would also be similar at 140°C.

$$pK_{a}(T) = \frac{\Delta S_{e}^{\circ}(T_{r})}{2.303RT} \left[T_{r} - T - \frac{\theta}{\omega} \left(1 - \exp\left[\exp\left(b + aT\right) - c + \frac{(T - T_{r})}{\theta} \right] \right) \right] - \frac{\Delta H_{r}^{\circ}(T_{r})}{2.303RT} + \frac{\Delta S_{r}^{\circ}(T_{r})}{2.303R} + \frac{\alpha}{2.303R} \left(\ln \frac{T}{T_{r}} - 1 + \frac{T}{T_{r}} \right) + \frac{\beta (T - T_{r})^{2}}{4.606RT}$$

Parameter	Symbol	pK _{a1} (H ₂ O)	pK _{a1} (H ₃ PO ₄)	pK _a (HNO ₃)	pK _{a2} (H ₂ SO ₄)	pK _a (AcOH)	pK _a (HCl)			
Reference temperature	T _r (K)	298.15								
Temperature	T (K)	413.15								
Gas constant	R (cal/molK)	1.987								
Solvent- dependent constant	a	0.01875								
Solvent- dependent constant	b	-12.741								
Solvent- dependent constant	θ	219								
Solvent- dependent constant	c	0.000784								
Electrostatic contribution to ΔS_r°	ΔS _e ° (cal/molK)	-13.4482	-60.1485	3.7356	-39.8978	-3.9504	-15.525			
Entropy of dissociation	$\frac{\Delta S_{r}^{\circ}}{(cal/molK)}$	-19.31	-16.0	-7.2	-22.0	-22.1	-34,4			
Enthalpy of dissociation	$\frac{\Delta H_r^{\circ}}{(cal/mol)}$	13,335 -1,840 -4,100 -3,850 -112 -18,630								
Reaction- dependent coefficient	α	-135.070	-300.614	10.434	-424.825	-30.199	-685.62			
Reaction- dependent coefficient	β	3,479.41	11,613.89	-1,875.98	12,657.02	-88.49	1.9054			

Table 1: Parameters for the calculation of pK_a values at 140°C as provided by Helgeson³⁴.

From these pKa_{140°C} values [H]_{140°C} was calculated as

$$[H] = [H_2A^-]_c + 2[HA^{2-}]_c + 3[A^{3-}]_c$$

where $[H_2A^-]$, $[HA^{2-}]$ and $[A^{3-}]$ are the concentrations of the different rest ions. The index c is attributed to the necessity of corrections, which are: $[H_2A^-]_c = [H_2A^-] - [HA^{2-}]$

$$[HA^{2^{-}}]_{c} = [HA^{2^{-}}] - [A^{3^{-}}]$$

$$[A^{3^{-}}]_{c} = [A^{3^{-}}]$$

$$[H_{2}A^{-}] = -\frac{K_{a1}}{2} + \sqrt{\frac{K_{a1}^{2}}{4} + K_{a1}c_{0} + K_{W}}$$

$$[HA^{2^{-}}] = \frac{K_{a2}}{2} + \sqrt{\frac{K_{a2}^{2}}{4} + K_{a2}[H_{2}A^{-}] + K_{W}}$$

$$[A^{3^{-}}] = -\frac{K_{a3}}{2} + \sqrt{\frac{K_{a3}^{2}}{4} + K_{a3}[HA^{2^{-}}] + K_{W}}$$

 c_0 is the initial concentration of the acid and K_W is the dissociation constant of water.

If necessary, K_{a3} and K_{a2} were zero in the case that the acid was not triprotic.

 c_0 was determined by the reverse calculation using $[H]_{RT}$ and $pKa_{25^\circ C}$ values which are known from the measurements and the literature, respectively.

Experimental yields, conversion and selectivities

Table 2: Conversion of fructose (C(Frc)), yield of HMF and LA (Y(HMF/LA)) and selectivity, depending on reaction time and acid. ^{n.d.} not determined ^a 22 h

	Time (min):	0	10	20	40	60	120	180	240	300
H ₃ PO ₄ pH.1.0	C(Frc)	33%	82%	98%	100%	n.d.	n.d.	n.d.	n.d.	n.d.
	Y(HMF)	15%	45%	42%	25%	n.d.	n.d.	n.d.	n.d.	n.d.
	Y(LA)	0%	11%	24%	40%	n.d.	n.d.	n.d.	n.d.	n.d.
	S(HMF)	46%	55%	42%	25%	n.d.	n.d.	n.d.	n.d.	n.d.
	S(HMF+LA)	47%	68%	67%	65%	n.d.	n.d.	n.d.	n.d.	n.d.
H ₂ SO ₄ pH.1.1	C(Frc)	24%	n.d.	73%	n.d.	91%	100%	n.d.	n.d.	n.d.
	Y(HMF)	12%	n.d.	37%	n.d.	32%	16%	n.d.	n.d.	n.d.
	Y(LA)	1%	n.d.	10%	n.d.	29%	51%	n.d.	n.d.	n.d.
	S(HMF)	53%	n.d.	50%	n.d.	36%	16%	n.d.	n.d.	n.d.
	S(HMF+LA)	55%	n.d.	64%	n.d.	68%	68%	n.d.	n.d.	n.d.
HCl pH.1.2	C(Frc)	33%	57%	73%	86%	n.d.	n.d.	n.d.	n.d.	n.d.
	Y(HMF)	20%	37%	41%	35%	n.d.	n.d.	n.d.	n.d.	n.d.
	Y(LA)	1%	10%	18%	35%	n.d.	n.d.	n.d.	n.d.	n.d.
	S(HMF)	61%	66%	56%	40%	n.d.	n.d.	n.d.	n.d.	n.d.
	S(HMF+LA)	65%	82%	80%	81%	n.d.	n.d.	n.d.	n.d.	n.d.

HNO ₃	C(Frc)	43%	n.d.	81%	n.d.	91%	97%	n.d.	n.d.	n.d.
pH.1.2	Y(HMF)	26%	n.d.	40%	n.d.	22%	6%	n.d.	n.d.	n.d.
	Y(LA)	3%	n.d.	22%	n.d.	51%	68%	n.d.	n.d.	n.d.
	S(HMF)	60%	n.d.	50%	n.d.	24%	6%	n.d.	n.d.	n.d.
	S(HMF+LA)	67%	n.d.	77%	n.d.	80%	77%	n.d.	n.d.	n.d.
Citric	C(Frc)	8%	n.d.	40%	n.d.	86%	100%	n.d.	n.d.	n.d.
acid	Y(HMF)	5%	n.d.	30%	n.d.	42%	30%	n.d.	n.d.	n.d.
pH.1.4	Y(LA)	0%	n.d.	2%	n.d.	11%	27%	n.d.	n.d.	n.d.
	S(HMF)	63%	n.d.	75%	n.d.	49%	30%	n.d.	n.d.	n.d.
	S(HMF+LA)	63%	n.d.	80%	n.d.	62%	57%	n.d.	n.d.	n.d.
Glycolic	C(Frc)	6%	n.d.	22%	n.d.	44%	71%	n.d.	n.d.	n.d.
acid	Y(HMF)	1%	n.d.	9%	n.d.	25%	37%	n.d.	n.d.	n.d.
рН.1.8	Y(LA)	0%	n.d.	0%	n.d.	1%	3%	n.d.	n.d.	n.d.
	S(HMF)	12%	n.d.	42%	n.d.	57%	53%	n.d.	n.d.	n.d.
	S(HMF+LA)	12%	n.d.	42%	n.d.	59%	57%	n.d.	n.d.	n.d.
Citric	C(Frc)	15%	n.d.	29%	n.d.	46%	62%	81%	90%	98%
acid	Y(HMF)	7%	n.d.	16%	n.d.	27%	40%	42%	42%	37%
pH.2.0	Y(LA)	0%	n.d.	0%	n.d.	1%	5%	9%	12%	19%
	S(HMF)	47%	n.d.	56%	n.d.	60%	64%	52%	47%	38%
	S(HMF+LA)	47%	n.d.	57%	n.d.	63%	72%	62%	60%	57%
H ₃ PO ₄	C(Frc)	7%	n.d.	17%	n.d.	32%	48%	62%	74%	88%
pH.2.0	Y(HMF)	1%	n.d.	7%	n.d.	16%	29%	39%	43%	43%
	Y(LA)	0%	n.d.	0%	n.d.	0%	2%	5%	8%	15%
	S(HMF)	17%	n.d.	44%	n.d.	50%	61%	63%	58%	49%
	S(HMF+LA)	17%	n.d.	44%	n.d.	50%	65%	71%	69%	66%
Acetic acid pH.2.0	C(Frc)	19%	n.d.	n.d.	n.d.	n.d.	79%	n.d.	96%	100%ª
	Y(HMF)	0%	n.d.	n.d.	n.d.	n.d.	37%	n.d.	45%	19%ª
	Y(LA)	0%	n.d.	n.d.	n.d.	n.d.	0%	n.d.	2%	7%ª
	S(HMF)	0%	n.d.	n.d.	n.d.	n.d.	47%	n.d.	47%	19%ª
	S(HMF+LA)	0%	n.d.	n.d.	n.d.	n.d.	48%	n.d.	49%	26%ª

Reaction rate constants

Table 3: reaction rate constants determined at 140°C

	$k_1 (10^{-3} \text{ min}^{-1})$	$k_2 (10^{-3} \text{ min}^{-1})$	$k_3 (10^{-3} \text{ min}^{-1})$	$k_4 (10^{-3} \text{ min}^{-1})$
H ₃ PO ₄ pH.1.0	102,00	30,00	24,00	0,00
H ₂ SO ₄ pH.1.1	33,50	14,50	13,30	0,00
HCl pH.1.2	43,60	23,50	0,00	3,50
HNO ₃ pH.1.2	45,32	24,16	0,56	2,99
Citric acid pH.1.4	20,80	6,00	5,70	5,70
Glycolic acid pH.1.8	6,00	0,90	3,20	0,80
Citric acid pH.2.0	7,20	1,50	0,70	2,30
H ₃ PO ₄ pH.2.0	3,92	1,35	1,38	0,06
Acetic acid pH.2.0	7,60	0,17	3,80	0,70