Supporting Information

Hydrogen generation from formic acid decomposition on a highly

efficient iridium catalyst bearing diaminoglyoxime ligand

Sheng-Mei Lu, Zhijun Wang, Jijie Wang, Jun Li, Can Li*

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China **General:** ¹H NMR and ¹³C NMR spectra were recorded on a BrukerAvance 400 NMR spectrometer. Chemical shifts are given in ppm and spin-spin coupling constants, *J*, are given in Hz. Column chromatography was performed on silica gel (200-300 mesh). GC analysis results was obtained with Techcomp GC7890 II equipped with a TCD and a FID. The pH values were measured on a ZDJ-400DH multi-function titrator with a glass electrode after calibration to standard buffer solutions. The residual concentration of formic acid was measured by SHINEHA CIC-100 ion chromatograph with Shodex IC SI-52 4E column using Na₂CO₃ solution (3.6 mM) as the eluent. HRMS data were recorded on a Finnigan MAT 95 system. Formic acid (98%) was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. [IrCp*Cl₂]₂(98%) was purchased from J&K. Sodium formate was purchased from Sinopharm Chemical Reagent Co. Ltd. Ligands L1^[1], L2^[1], L4^[1,2], L5^[3], L6^[4] were known compounds and synthesized according to literature procedures. L3 was purchased from J&K Company. L7 and L8 were new compounds and synthesized according to the procedure of L6^[4].

Characterization of ligands:

L1(Glyoxime), white solid;¹H NMR (400 MHz, d₆-DMSO): δ (ppm) = 7.72 (s, 2H), 11.61 (s, 2H); ¹³C{¹H} NMR (100 MHz, d₆-DMSO): δ (ppm) = 145.9.

L2(Dichloroglyoxime), white solid; ¹H NMR (400 MHz, d₆-DMSO): δ (ppm) = 13.11 (s, 2H); ¹³C{¹H} NMR (100 MHz, d₆-DMSO): δ (ppm) = 131.2.

L4 (Diaminoglyoxime), white solid; ¹H NMR (400 MHz, d₆-DMSO): δ (ppm) = 9.75 (s, 2H), 5.16 (s, 4H); ¹³C{¹H} NMR (101 MHz, d₆-DMSO): δ (ppm) = 145.8

L5 (Di-iso-propylamineglyoxime), slightly yellow solid; ¹H NMR (400 MHz, d₆-DMSO): δ (ppm) = 9.61 (s, 2H), 5.37 (d, 2H, *J* = 12 Hz), 3.32-3.43 (m, 2H), 1.04-1.06 (m, 12 H); ¹³C{¹H} NMR (100 MHz, d₆-DMSO): δ (ppm) = 147.3, 44.7, 24.8.

L6 (2,3-Piperazinedione dioximes), white solid; ¹H NMR (400 MHz, d₆-DMSO): δ (ppm) = 9.47 (s, 2H), 6.29 (s, 2H), 3.10 (s, 4H); ¹³C{¹H} NMR (100 MHz, d₆-DMSO): δ (ppm) = 144.3, 40.6;

L7 (5-Methyl-Piperazine-2,3-dione dioximes), white solid; ¹H NMR (400 MHz, d₆-

DMSO): δ (ppm) = 1H NMR (400 MHz, DMSO) δ 9.59 (s, 1H), 9.51 (s, 1H), 6.29 (s, 1H), 6.02 (s, 1H), 3.40-3.35 (m, 1H), 3.20-3.15 (m, 1H), 2.79 (ddd, J = 11.6, 8.4, 2.4 Hz, 1H), 1.09 (d, J = 6.4 Hz, 3H); ¹³C {¹H} NMR (100 MHz, d₆-DMSO): δ (ppm) = 143.89, 143.88, 45.7, 45.2, 19.3; HRMS: calcd. forC₅H₁₁N₄O₂ [M+H]⁺, 159.0882, Found 159.0889.

L8 (Octahydroquinoxaline-2,3-dione dioxime), white solid; ¹H NMR (400 MHz, d₆-DMSO): δ (ppm) = 9.65 (s, 2H), 5.92 (s, 2H), 2.78-2.76 (m, 2H), 1.98 (d, *J* = 12.4 Hz, 2H), 1.64 (d, *J* = 8.4 Hz, 2H), 1.27-1.11 (m, 4H); ¹³C {¹H} NMR (100 MHz, d₆-DMSO): δ (ppm) = 144.2, 55.7, 30.1, 24.0; HRMS: calcd. for C₈H₁₅N₄O₂ [M+H]⁺, 199.1195, Found 199.1211.

Scheme S1 Selected homogeneous catalysts for large amount of formic acid dehydrogenation in water or without solvents

Catalys	Solvent	Additives	Т	Time	TON	Average	Ref.
t			(°C)	(h)	(×10 ⁴)	rate (h ⁻¹)	
1	H ₂ O	None	60	2600	500	1923	(5)
2	H_2O	None	60	580	205	3534	(6)
3	H_2O	None	50	363	200	5510	(7)
4	None	SF	90	2880	216	750	(8)
5	H_2O	None	80	14	240	171000	(9)
6 or 7	H_2O	None	90	12.5	220	176000	This work
7	H_2O	None	90	60	390	65000	This work
6	H_2O	None	70	45	220	48889	This work
6	H_2O	None	70	175	502	28686	This work

References:

- (1) (a) N. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Eur. J. Inorg. Chem.
- 2013, 2167-2180; (b) P. L. van der Peet, T. U. Connell, C. Gunawan, J. M. White, P. S.
- Donnelly, S. J. Williams, J. Org. Chem. 2013, 78, 7298-7304.
- (2) A. K. Zelenin, M. L. Trudell, J. Heterocyclic Chem. 1997, 34, 1057-1060.
- (3) (a) V. G. Andrianov, A. V. Eremeev, Zhurnal Organicheskoi Khimii, 1991, 27, 112-
- 116; (b) G. Gümüs, V. Ahsen, C. Lebrun, D. Luneau, J. Pécaut, New. J. Chem. 2004, 28, 177-179.
- (4) R. L. Willer, J. Org. Chem. 1985, 50, 5123-5127.
- (5) M. Iguchi, Y. Himeda, Y. Manaka, H. Kawanami, *ChemSusChem***2016**, *9*, 2749-2753.
- (6) W.-H. Wang, M. Z. Ertem, S. Xu, N. Onishi, Y. Manaka, Y. Suna, H. Kambayashi,
- J. T. Muckerman, E. Fujita, Y. Himeda, ACS Catal. 2015, 5, 5496-5504.
- (7) N. Onishi, M. Z. Ertem, S. Xu, A. Tsurusaki, Y. Manaka, J. T. Muckerman, E. Fujita, Y. Himeda, *Catal. Sci. Technol.*, 2016, *6*, 988-992.
- (8) J. J. A. Celaje, Z. Lu, E. A. Kedzie, N. J. Terrile, J. N. Lo, T. J. Williams, *Nat. Commun.* **2016**, 11308
- (9) Z. Wang, S.-M. Lu, J. Li, J. Wang, C. Li, Chem. Eur. J., 2015, 21, 12592-12595.

Reaction conditions optimization

Entry	рН	TOF (h ⁻¹)
1	0.71	1625 ^a
2	1.10	5938 ^a
3	1.31	8750
4	1.59	13750
5	1.78	33750
6	1.95	33750
7	2.26	32500
8	2.52	28750
9	2.68	26250
10	3.06	22500
11	3.30	20000
12	3.51	15000
13	3.69	12500
14	4.10	7500
15	4.74	1875
16	8.01	0

Table S1 pH dependence of the FA dehydrogenation with Ir-L7

General reaction conditions: complex Ir-L7 (1.0 μ mol), 60 °C, FA/HCO₂Na (1.0 M of FA and HCOONa, 10.0 mL) or FA/CH₃SO₃H (FA, 1.0 M, 10.0 mL); TOF was calculated based on the conversion in the first 3 minutes. ^{a:} TOF was calculated based on the conversion in the first 8 minutes.

Fig. S1 pH dependence of the reaction initial TOF. Reaction conditions: complex **Ir-L7** (1.0 μmol), 60 °C, FA/HCO₂Na (1.0 M, 10.0 mL) or FA/CH₃SO₃H (FA, 1.0 M, 10.0 mL)

Entry	Temp. (°C)	TOF (h ⁻¹)	
1	30	2500 ^a	
2	40	6875	
3	50	16250	
4	60	33750	
5	70	65000	
6	80	116250	
7	90	213750	

Table S2 Temperature dependence of the FA dehydrogenation with Ir-L7

General reaction conditions: **Ir-L7** (1.0 μ mol); FA (1.0 M, 10.0 mL), TOF was calculated based on the conversion in the first 3 minutes. ^{a:} TOF was calculated based on the conversion in the first 5 minutes.

Fig. S2 Temperature dependence of the reaction initial TOF. Reaction conditions: Ir-L7 (1.0 μmol), 30-90 °C, FA (1.0 M, 10.0 mL).

Entry	Catalyst concentration(µM)	TOF (h ⁻¹)
1	25	32500
2	50	35000
3	100	33750
4	200	30000

Table S3 Catalyst concentration dependence of the FA dehydrogenation with Ir-L7

General reaction conditions: Ir-L7 (0.25-2.0 μ mol); FA (1.0 M, 10.0 mL), 60 °C; TOF was calculated based on the conversion in the first 3 minutes.

Fig. S3 Catalyst concentration dependence of the reaction initial TOF, Reaction conditions: complex Ir-L7 (25-200 μ M), 60 °C, FA (1.0 M, 10.0 mL).

Entry		Time	Initial	Average	Residual FA	TON
Ениту	ГА (NI)	(min)	TOF (h⁻¹)	rate (h ⁻¹)	(mmol)	ION
1	0.5	19	27500	15729	0.019	4981
2	1.0	28	33750	21388	0.019	9981
3	2.0	45	36250	26661	0.004	19996
4	4.0	75	37500	31995	0.006	39994
5	6.0	125	31250	28795	0.010	59990
6	8.0	164	28750	29265	0.008	79992
7	10.0	320	17500	18747	0.016	99984
8	12.0	385	13750	18699	0.015	119985
9	20.0	420	1875	2500	182.5	17500

Table S4 FA concentration dependence of the FA dehydrogenation with Ir-L7

General reaction conditions: complex Ir-L7 (1.0 µmol); FA (0.5-20.0 M, 10.0 mL), 60 °C; TOF was

calculated based on the conversion in the first 3 minutes.

Entry	Cat.	FA (mol)	React.	TON(×10 ⁴)	Average
1	Ir/I A	0.9	9.25	90	9.7
2	11/124	1.8	44.0	81	1.8
3		0.9	5.8	90	15.5
4	Ir/L6	1.8	18.0	180	10.0
5		2.2	21.0	220	10.5
6		0.9	5.25	90	17.1
7	Ir/L7	1.8	13.5	180	13.3
8		2.2	22.5	220	9.8
9		0.9	5.5	90	16.3
10	Ir/L8	1.8	13.5	180	13.3
11		2.2	17.5	220	12.6
12		0.9	6.0	90	15.0
13	Ir-L7	1.8	15.0	180	12.0
14		2.2	21.0	220	10.5
15		0.9	5.8	90	15.5
16	Ir-L8	1.8	16.0	180	11.2
17		2.2	20.5	220	10.7

Table S5 The stabilities and efficiencies of the different iridium catalysts for different amount FA dehydrogenation at 90 °C

General reaction conditions: iridium complex: (1.0 μ mol); for in situ catalyst: [IrCp*Cl₂]₂ (0.5 μ mol), L/Ir = 1.2, FA (10.0 M), 90 °C; The residual FA amount was measured by ion chromatograph and all the reactions have 99.9% conversion except entry 2;

Fig. S4 The catalytic efficiencies comparison of different iridium catalysts for different amount FA dehydrogenation. General reaction conditions: iridium complex: (1.0 µmol); for in situ catalyst:

[IrCp*Cl₂]₂ (0.5 µmol), L/Ir = 1.2, FA (10.0 M), 90 °C;

Entry	Cat.	L/Ir	Time(h)	Average rate (×10 ⁴ , h ⁻¹)
1	Ir/L6	2.0	15.0	14.7
2	Ir/L6	4.4	12.5	17.6
3	Ir/L6	7.0	13.5	16.3
4	Ir/L8	2.0	14.5	15.2
5	Ir/L8	4.4	12.5	17.6
6	Ir/L8	7.0	12.5	17.6

Table S6 The effect of the L/Ir ratio on FA dehydrogenation at 90 °C

^{a:} General reaction conditions: iridium complex: $(1.0 \ \mu mol)$; for in situ catalyst: $[IrCp*Cl_2]_2$ (0.5 μmol), FA (10.0 M, 220 mL), 90 °C; The residual FA amount was measured by ion chromatograph and all the reactions have 99.9% conversion.

Table S7 FA concentration dependence of the FA dehydrogenation with Ir/L6 at 25 °C

Entry	FA (M)	Time (h)	Initial TOF (h ⁻¹)	TON
1	0.5	6.5	1000	5000
2	1.0	9.5	1375	10000
3	2.0	16	1417	20000
4	4.0	30	1375	40000
5	6.0	46	1292	59990
6	10.0	98	708	99857
7	12.0	134	500	119966

General reaction conditions: in situ form catalyst from $[IrCp*Cl_2]_2$ (0.5 µmol) and L6 (1.2 µmol); FA (0.5-12.0 M, 10.0 mL), 25 °C; TOF was calculated based on the conversion in the first 30 minutes.

¹H NMR spectra of ligand L7 in DMSO-D6

¹³C NMR spectra of ligand L7 in DMSO-D6

¹H NMR spectra of ligand L8 in DMSO-D6

¹H NMR spectra of **Ir-L7** in D₂O, some solvent MeOH remained.

 13 C NMR spectra of Ir-L7 in D₂O, some solvent MeOH remained.

¹H NMR spectra of **Ir-L8** in D_2O .

Crystal structure of [Cp*Ir(L8)(Cl)][Cl]:

CCDC 1532094 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

-					
Identification code	mo_dm16457_0m	mo_dm16457_0m			
Empirical formula	C18 H29 Cl2 Ir N4 O2	C18 H29 Cl2 Ir N4 O2			
Formula weight	596.57	596.57			
Temperature	130 K				
Wavelength 0.71073 Å					
Crystal system	Triclinic				
Space group	P -1				
Unit cell dimensions	a = 9.1521(12) Å	$\Box = 88.195(2)^{\circ}.$			
	b = 9.6810(12) Å	$\Box = 86.069(2)^{\circ}.$			
	c = 11.7658(15) Å	$\Box = 89.089(2)^{\circ}.$			
Volume	1039.4(2) Å ³				
Z	2				
Density (calculated)	1.906 Mg/m ³	1.906 Mg/m ³			
Absorption coefficient	6.701 mm ⁻¹	6.701 mm ⁻¹			
F(000)	584	584			
Crystal size	? x ? x ? mm ³	? x ? x ? mm ³			
Theta range for data collection	1.736 to 27.531°.	1.736 to 27.531°.			
Index ranges	-9<=h<=11, -12<=k<=12	-9<=h<=11, -12<=k<=12, -15<=l<=15			
Reflections collected	8434	8434			
Independent reflections	4763 [R(int) = 0.0325]	4763 [R(int) = 0.0325]			

Table 1. Crystal data and structure refinement for mo_dm16457_0m.

Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 99.9 % Semi-empirical from equivalents 0.7456 and 0.5408 Full-matrix least-squares on F² 4763 / 0 / 249 1.006 R1 = 0.0358, wR2 = 0.0818 R1 = 0.0506, wR2 = 0.0883 n/a 2.879 and -3.180 e.Å⁻³

	Х	У	Z	U(eq)
Ir(1)	6195(1)	7155(1)	7512(1)	20(1)
Cl(1)	6222(2)	9635(1)	7582(1)	24(1)
O(1)	9487(4)	7023(4)	6993(3)	26(1)
O(2)	4234(4)	8072(4)	5515(3)	25(1)
N(1)	8137(5)	7299(5)	6539(4)	21(1)
N(2)	9317(5)	7939(5)	4763(4)	23(1)
N(3)	6532(5)	8706(5)	4111(4)	21(1)
N(4)	5608(5)	7595(5)	5829(4)	20(1)
C(1)	8136(6)	7728(6)	5483(5)	22(1)
C(2)	9106(6)	8256(6)	3564(5)	22(1)
C(3)	7852(6)	9281(6)	3480(5)	23(1)
C(4)	6665(6)	8040(5)	5104(5)	19(1)
C(5)	7576(6)	9602(6)	2245(5)	24(1)
C(6)	8981(7)	10122(7)	1588(5)	28(1)
C(7)	10267(7)	9154(7)	1718(5)	27(1)
C(8)	10499(6)	8860(6)	2978(5)	22(1)
C(9)	4339(7)	6188(6)	8474(5)	23(1)
C(10)	5293(7)	5146(6)	7942(5)	24(1)
C(11)	6707(7)	5244(6)	8389(5)	25(1)
C(12)	6651(7)	6386(6)	9174(5)	26(1)
C(13)	5182(7)	6930(6)	9243(5)	25(1)
C(14)	4621(8)	8077(7)	9978(5)	32(1)
C(15)	7873(8)	6880(7)	9829(6)	35(2)
C(16)	8005(7)	4353(6)	8094(6)	33(1)
C(17)	4873(8)	4099(6)	7110(6)	33(1)
C(18)	2738(7)	6386(7)	8316(6)	33(1)
Cl(2)	1930(2)	5823(2)	5359(1)	31(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for mo_dm16457_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Ir(1)-Cl(1)	2.4054(14)
Ir(1)-N(1)	2.052(5)
Ir(1)-N(4)	2.116(5)
Ir(1)-C(9)	2.182(6)
Ir(1)-C(10)	2.157(5)
Ir(1)-C(11)	2.151(6)
Ir(1)-C(12)	2.135(6)
Ir(1)-C(13)	2.185(6)
O(1)-H(1)	0.8193
O(1)-N(1)	1.398(6)
O(2)-H(2)	0.8202
O(2)-N(4)	1.402(6)
N(1)-C(1)	1.297(7)
N(2)-H(2A)	0.8609
N(2)-C(1)	1.341(7)
N(2)-C(2)	1.459(7)
N(3)-H(3)	0.8604
N(3)-C(3)	1.481(7)
N(3)-C(4)	1.329(7)
N(4)-C(4)	1.313(7)
C(1)-C(4)	1.472(8)
C(2)-H(2B)	1.0000
C(2)-C(3)	1.511(8)
C(2)-C(8)	1.524(8)
C(3)-H(3A)	1.0000
C(3)-C(5)	1.513(8)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(5)-C(6)	1.538(8)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(6)-C(7)	1.506(9)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(7)-C(8)	1.528(8)
C(8)-H(8A)	0.9900

 $Table \ 3. \hspace{1.5cm} Bond \ lengths \ [\text{\AA}] \ and \ angles \ [^\circ] \ for \ mo_dm16457_0m.$

C(8)-H(8B)	0.9900
C(9)-C(10)	1.452(8)
C(9)-C(13)	1.445(8)
C(9)-C(18)	1.498(9)
C(10)-C(11)	1.436(8)
C(10)-C(17)	1.503(8)
C(11)-C(12)	1.461(8)
C(11)-C(16)	1.485(9)
C(12)-C(13)	1.434(9)
C(12)-C(15)	1.495(8)
C(13)-C(14)	1.492(8)
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
N(1)-Ir(1)-Cl(1)	86.82(14)
N(1)-Ir(1)-N(4)	74.49(18)
N(1)-Ir(1)-C(9)	158.5(2)
N(1)-Ir(1)-C(10)	119.4(2)
N(1)-Ir(1)-C(11)	96.5(2)
N(1)-Ir(1)-C(12)	108.4(2)
N(1)-Ir(1)-C(13)	145.2(2)
N(4)-Ir(1)-Cl(1)	82.41(13)
N(4)-Ir(1)-C(9)	108.5(2)
N(4)-Ir(1)-C(10)	104.64(19)
N(4)-Ir(1)-C(11)	131.8(2)

N(4)-Ir(1)-C(12)	170.73(19)
N(4)-Ir(1)-C(13)	140.0(2)
C(9)-Ir(1)-Cl(1)	114.62(16)
C(9)-Ir(1)-C(13)	38.6(2)
C(10)-Ir(1)-Cl(1)	153.72(17)
C(10)-Ir(1)-C(9)	39.1(2)
C(10)-Ir(1)-C(13)	65.2(2)
C(11)-Ir(1)-Cl(1)	145.27(16)
C(11)-Ir(1)-C(9)	65.2(2)
C(11)-Ir(1)-C(10)	38.9(2)
C(11)-Ir(1)-C(13)	65.2(2)
C(12)-Ir(1)-Cl(1)	106.40(16)
C(12)-Ir(1)-C(9)	65.5(2)
C(12)-Ir(1)-C(10)	66.2(2)
C(12)-Ir(1)-C(11)	39.9(2)
C(12)-Ir(1)-C(13)	38.8(2)
C(13)-Ir(1)-Cl(1)	92.86(16)
N(1)-O(1)-H(1)	109.4
N(4)-O(2)-H(2)	109.5
O(1)-N(1)-Ir(1)	122.0(3)
C(1)-N(1)-Ir(1)	119.7(4)
C(1)-N(1)-O(1)	118.1(5)
C(1)-N(2)-H(2A)	120.5
C(1)-N(2)-C(2)	118.9(5)
C(2)-N(2)-H(2A)	120.6
C(3)-N(3)-H(3)	120.2
C(4)-N(3)-H(3)	120.4
C(4)-N(3)-C(3)	119.4(5)
O(2)-N(4)-Ir(1)	126.0(3)
C(4)-N(4)-Ir(1)	116.0(4)
C(4)-N(4)-O(2)	111.4(4)
N(1)-C(1)-N(2)	126.5(5)
N(1)-C(1)-C(4)	113.7(5)
N(2)-C(1)-C(4)	119.8(5)
N(2)-C(2)-H(2B)	109.2
N(2)-C(2)-C(3)	109.2(5)
N(2)-C(2)-C(8)	110.1(5)
C(3)-C(2)-H(2B)	109.2

C(3)-C(2)-C(8)	109.8(5)
C(8)-C(2)-H(2B)	109.2
N(3)-C(3)-C(2)	108.9(5)
N(3)-C(3)-H(3A)	108.7
N(3)-C(3)-C(5)	111.2(5)
C(2)-C(3)-H(3A)	108.7
C(2)-C(3)-C(5)	110.6(5)
C(5)-C(3)-H(3A)	108.7
N(3)-C(4)-C(1)	119.3(5)
N(4)-C(4)-N(3)	127.5(5)
N(4)-C(4)-C(1)	113.2(5)
C(3)-C(5)-H(5A)	109.6
C(3)-C(5)-H(5B)	109.6
C(3)-C(5)-C(6)	110.5(5)
H(5A)-C(5)-H(5B)	108.1
C(6)-C(5)-H(5A)	109.6
C(6)-C(5)-H(5B)	109.6
C(5)-C(6)-H(6A)	109.1
C(5)-C(6)-H(6B)	109.1
H(6A)-C(6)-H(6B)	107.8
C(7)-C(6)-C(5)	112.6(5)
C(7)-C(6)-H(6A)	109.1
C(7)-C(6)-H(6B)	109.1
C(6)-C(7)-H(7A)	109.5
C(6)-C(7)-H(7B)	109.5
C(6)-C(7)-C(8)	110.7(5)
H(7A)-C(7)-H(7B)	108.1
C(8)-C(7)-H(7A)	109.5
C(8)-C(7)-H(7B)	109.5
C(2)-C(8)-C(7)	109.3(5)
C(2)-C(8)-H(8A)	109.8
C(2)-C(8)-H(8B)	109.8
C(7)-C(8)-H(8A)	109.8
C(7)-C(8)-H(8B)	109.8
H(8A)-C(8)-H(8B)	108.3
C(10)-C(9)-Ir(1)	69.5(3)
C(10)-C(9)-C(18)	125.9(5)
C(13)-C(9)-Ir(1)	70.8(3)

C(13)-C(9)-C(10)	107.8(5)
C(13)-C(9)-C(18)	126.1(6)
C(18)-C(9)-Ir(1)	128.5(4)
C(9)-C(10)-Ir(1)	71.4(3)
C(9)-C(10)-C(17)	126.6(6)
C(11)-C(10)-Ir(1)	70.3(3)
C(11)-C(10)-C(9)	108.0(5)
C(11)-C(10)-C(17)	125.4(6)
C(17)-C(10)-Ir(1)	126.0(4)
C(10)-C(11)-Ir(1)	70.8(3)
C(10)-C(11)-C(12)	108.0(5)
C(10)-C(11)-C(16)	126.0(5)
C(12)-C(11)-Ir(1)	69.5(3)
C(12)-C(11)-C(16)	126.0(6)
C(16)-C(11)-Ir(1)	124.7(4)
C(11)-C(12)-Ir(1)	70.7(3)
C(11)-C(12)-C(15)	126.9(6)
C(13)-C(12)-Ir(1)	72.5(3)
C(13)-C(12)-C(11)	107.7(5)
C(13)-C(12)-C(15)	125.4(6)
C(15)-C(12)-Ir(1)	124.2(4)
C(9)-C(13)-Ir(1)	70.6(3)
C(9)-C(13)-C(14)	125.7(6)
C(12)-C(13)-Ir(1)	68.8(3)
C(12)-C(13)-C(9)	108.5(5)
C(12)-C(13)-C(14)	125.8(6)
C(14)-C(13)-Ir(1)	126.1(4)
C(13)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
C(13)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
С(12)-С(15)-Н(15А)	109.5
C(12)-C(15)-H(15B)	109.5
C(12)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5

H(15B)-C(15)-H(15C)	109.5
C(11)-C(16)-H(16A)	109.5
C(11)-C(16)-H(16B)	109.5
С(11)-С(16)-Н(16С)	109.5
H(16A)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
С(10)-С(17)-Н(17А)	109.5
С(10)-С(17)-Н(17В)	109.5
С(10)-С(17)-Н(17С)	109.5
H(17A)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(9)-C(18)-H(18A)	109.5
C(9)-C(18)-H(18B)	109.5
C(9)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ir(1)	22(1)	16(1)	21(1)	-3(1)	-2(1)	1(1)
Cl(1)	24(1)	17(1)	32(1)	-4(1)	2(1)	-2(1)
O(1)	18(2)	34(2)	25(2)	-1(2)	-6(2)	7(2)
O(2)	18(2)	27(2)	31(2)	-1(2)	-3(2)	2(2)
N(1)	15(2)	21(2)	27(2)	-3(2)	-2(2)	5(2)
N(2)	16(2)	27(2)	26(2)	0(2)	-5(2)	-1(2)
N(3)	18(2)	26(2)	21(2)	1(2)	-4(2)	0(2)
N(4)	15(2)	19(2)	26(2)	-2(2)	-3(2)	2(2)
C(1)	21(3)	19(3)	26(3)	-3(2)	-5(2)	2(2)
C(2)	21(3)	21(3)	23(3)	-6(2)	-2(2)	0(2)
C(3)	23(3)	21(3)	24(3)	-5(2)	1(2)	-3(2)
C(4)	20(3)	15(2)	24(3)	-6(2)	-6(2)	1(2)
C(5)	22(3)	22(3)	27(3)	3(2)	-4(2)	0(2)
C(6)	30(4)	30(3)	24(3)	4(2)	-2(2)	1(3)
C(7)	22(3)	31(3)	28(3)	-3(2)	0(2)	4(2)
C(8)	17(3)	25(3)	25(3)	-2(2)	-1(2)	0(2)
C(9)	30(3)	15(3)	25(3)	4(2)	-1(2)	0(2)
C(10)	28(3)	15(3)	28(3)	-1(2)	-2(2)	-1(2)
C(11)	30(3)	17(3)	27(3)	4(2)	-7(2)	3(2)
C(12)	34(4)	20(3)	24(3)	-1(2)	-3(2)	-2(2)
C(13)	30(3)	21(3)	24(3)	-1(2)	1(2)	3(2)
C(14)	46(4)	25(3)	26(3)	-1(2)	3(3)	1(3)
C(15)	43(4)	29(3)	34(3)	-7(3)	-15(3)	-2(3)
C(16)	34(4)	21(3)	44(4)	-4(3)	-4(3)	8(3)
C(17)	40(4)	21(3)	38(3)	-8(3)	-7(3)	-3(3)
C(18)	30(4)	24(3)	43(4)	4(3)	3(3)	-1(3)
Cl(2)	24(1)	30(1)	40(1)	-5(1)	-6(1)	3(1)

Table 4. Anisotropic displacement parameters (Ųx 10³) for mo_dm16457_0m. The anisotropicdisplacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	у	Z	U(eq)
H(1)	9996	6547	6554	31
H(2)	3652	7434	5574	30
H(2A)	10184	7889	5004	27
H(3)	5688	8802	3836	26
H(2B)	8863	7388	3182	26
H(3A)	8116	10155	3842	27
H(5A)	6794	10317	2203	28
H(5B)	7240	8760	1891	28
H(6A)	8803	10234	769	33
H(6B)	9221	11040	1866	33
H(7A)	11160	9572	1339	32
H(7B)	10092	8276	1344	32
H(8A)	11325	8199	3051	27
H(8B)	10741	9726	3344	27
H(14A)	5359	8801	9969	49
H(14B)	4418	7721	10761	49
H(14C)	3718	8463	9688	49
H(15A)	8812	6562	9470	52
H(15B)	7760	6508	10614	52
H(15C)	7850	7892	9833	52
H(16A)	8083	4210	7271	49
H(16B)	7898	3459	8502	49
H(16C)	8891	4803	8313	49
H(17A)	4132	4503	6631	49
H(17B)	4473	3283	7527	49
H(17C)	5740	3829	6628	49
H(18A)	2506	7376	8252	50
H(18B)	2167	5974	8972	50
H(18C)	2493	5937	7620	50

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for mo_dm16457_0m.

Ir(1)-N(1)-C(1)-N(2)	176.5(4)
Ir(1)-N(1)-C(1)-C(4)	-1.3(6)
Ir(1)-N(4)-C(4)-N(3)	-161.5(4)
Ir(1)-N(4)-C(4)-C(1)	18.8(6)
Ir(1)-C(9)-C(10)-C(11)	61.1(4)
Ir(1)-C(9)-C(10)-C(17)	-121.5(6)
Ir(1)-C(9)-C(13)-C(12)	-58.5(4)
Ir(1)-C(9)-C(13)-C(14)	121.0(6)
Ir(1)-C(10)-C(11)-C(12)	59.8(4)
Ir(1)-C(10)-C(11)-C(16)	-119.4(6)
Ir(1)-C(11)-C(12)-C(13)	63.5(4)
Ir(1)-C(11)-C(12)-C(15)	-118.7(6)
Ir(1)-C(12)-C(13)-C(9)	59.6(4)
Ir(1)-C(12)-C(13)-C(14)	-119.9(6)
O(1)-N(1)-C(1)-N(2)	0.1(8)
O(1)-N(1)-C(1)-C(4)	-177.7(4)
O(2)-N(4)-C(4)-N(3)	-8.3(7)
O(2)-N(4)-C(4)-C(1)	172.0(4)
N(1)-C(1)-C(4)-N(3)	168.6(5)
N(1)-C(1)-C(4)-N(4)	-11.7(7)
N(2)-C(1)-C(4)-N(3)	-9.3(8)
N(2)-C(1)-C(4)-N(4)	170.4(5)
N(2)-C(2)-C(3)-N(3)	-56.0(6)
N(2)-C(2)-C(3)-C(5)	-178.4(4)
N(2)-C(2)-C(8)-C(7)	178.7(5)
N(3)-C(3)-C(5)-C(6)	-176.8(5)
C(1)-N(2)-C(2)-C(3)	43.0(7)
C(1)-N(2)-C(2)-C(8)	163.6(5)
C(2)-N(2)-C(1)-N(1)	172.3(5)
C(2)-N(2)-C(1)-C(4)	-10.1(8)
C(2)-C(3)-C(5)-C(6)	-55.8(6)
C(3)-N(3)-C(4)-N(4)	172.2(5)
C(3)-N(3)-C(4)-C(1)	-8.1(7)
C(3)-C(2)-C(8)-C(7)	-61.0(6)
C(3)-C(5)-C(6)-C(7)	53.0(7)
C(4)-N(3)-C(3)-C(2)	40.7(6)

Table 6. Torsion angles [°] for mo_dm16457_0m.

_

C(4)-N(3)-C(3)-C(5)	162.8(5)
C(5)-C(6)-C(7)-C(8)	-54.1(7)
C(6)-C(7)-C(8)-C(2)	57.6(6)
C(8)-C(2)-C(3)-N(3)	-176.8(4)
C(8)-C(2)-C(3)-C(5)	60.8(6)
C(9)-C(10)-C(11)-Ir(1)	-61.8(4)
C(9)-C(10)-C(11)-C(12)	-2.0(6)
C(9)-C(10)-C(11)-C(16)	178.8(6)
C(10)-C(9)-C(13)-Ir(1)	59.9(4)
C(10)-C(9)-C(13)-C(12)	1.4(6)
C(10)-C(9)-C(13)-C(14)	-179.1(5)
C(10)-C(11)-C(12)-Ir(1)	-60.6(4)
C(10)-C(11)-C(12)-C(13)	2.9(6)
C(10)-C(11)-C(12)-C(15)	-179.3(6)
C(11)-C(12)-C(13)-Ir(1)	-62.3(4)
C(11)-C(12)-C(13)-C(9)	-2.7(6)
C(11)-C(12)-C(13)-C(14)	177.8(5)
C(13)-C(9)-C(10)-Ir(1)	-60.7(4)
C(13)-C(9)-C(10)-C(11)	0.4(6)
C(13)-C(9)-C(10)-C(17)	177.8(6)
C(15)-C(12)-C(13)-Ir(1)	119.9(6)
C(15)-C(12)-C(13)-C(9)	179.5(6)
C(15)-C(12)-C(13)-C(14)	0.0(10)
C(16)-C(11)-C(12)-Ir(1)	118.6(6)
C(16)-C(11)-C(12)-C(13)	-177.9(6)
C(16)-C(11)-C(12)-C(15)	-0.1(10)
C(17)-C(10)-C(11)-Ir(1)	120.7(6)
C(17)-C(10)-C(11)-C(12)	-179.5(5)
C(17)-C(10)-C(11)-C(16)	1.3(10)
C(18)-C(9)-C(10)-Ir(1)	123.4(6)
C(18)-C(9)-C(10)-C(11)	-175.5(5)
C(18)-C(9)-C(10)-C(17)	2.0(9)
C(18)-C(9)-C(13)-Ir(1)	-124.2(6)
C(18)-C(9)-C(13)-C(12)	177.3(5)
C(18)-C(9)-C(13)-C(14)	-3.2(9)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for mo_dm16457_0m [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)