ARTICLE

Bio-electrochemical Conversion of Industrial Wastewater combined with downstream Methanol Synthesis – Economic- and Life Cycle Assessment

J. Streeck,^{a,b} C. Hank,^{a,c} M. Neuner,^a L. Gil-Carrera,^d M. Kokko,^{d,e} S. Pauliuk,^b A. Schaadt,^a S. Kerzenmacher,^d and R. J. White ^{a,*}

^{a.} Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg, Germany; Email: <u>robin.white@ise.fraunhofer.de</u>

^{b.} Albert-Ludwig-University of Freiburg, Faculty of Environment and Natural Resources, Tennenbacherstraße 4, 79106 Freiburg, Germany

^{c.}Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Straße 4, 76131 Karlsruhe, Germany

^{d.} Albert-Ludwig-University of Freiburg, Department of Microsystems Engineering, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

^{e.} Tampere University of Technology, Laboratory of Chemistry and Bioengineering, P.O. Box 541, 33101 Tampere, Finland

Electronic Supplementary Information

S1 Variable List

Descriptor	Full Name	Unit
A _E	Electrode Surface Area, MEC system	m²
B _n	Revenues in year n	€
CD	Current Density	mA/cm², A/m²
CH ₃ ḋH _{mol}	Molar CH ₃ OH Flow	mol/s
CH _{4-LN}	Methane Input (Standard Litres)	L _N
CH _{4-LHV}	Methane Lower Heating Value	kWh/Nm³
C _n	Operational costs in year n	€
COD	Chemical Oxygen Demand	g

Biomass	COD	
COD _{ox}	COD oxidized to CO ₂	g
COD _r	COD removal rate	%
CÓD _{mol}	COD molar flow in wastewater	mol/s
ΔCOD _{mol}	COD molar flow in wastewater that is oxidized in MEC	mol/s
CÒ ₂ mol	Molar CO ₂ Flow	mol/s
CO ₂ ,Biomass spec	Carbon dioxide emissions per gram biomass	g
CO _{2, Wastewater COD}	Carbon dioxide emissions from wastewater COD oxidation	g
CO _{2, Sludge}	Carbon dioxide emissions from sludge digestion	g
DM	Dry Matter	kg
En	Savings of wastewater treatment fees	€
ES	Excess Sludge	kg
e	Electron	
ė	Actual electron flow from substrate	electrons/s
ė _{pot}	potential electron flow from substrate	electrons/s
H₁ _{2 mol}	H ₂ molar flow	mol/s
I _{MEC}	MEC Current	A, kA
I ₀	Investment costs in year 0	€
Mn	Methanol production in year n	tonnes
MPC	Methanol Production Costs	€/t _{снзон}
M _{Biomass}	Molar weight of biomass	g/mol

COD Acetate in Bacterial biomass expressed as acetate g

M _{C02}	Molar weight of carbon dioxide	g/mol
M ₀₂	Molar weight of oxygen	g/mol
N _A	Avogadro's Number	moΓ¹
NPV	Net Present Value	€
oDM	Organic Dry Matter	kg
r	Discount rate	
q _e	Elementary Charge	Coulomb [C]
U _{Cell}	MEC Cell Voltage	mV
Vs	MEC System Volume	m³
V _{Cell}	MEC Cell Volume	m³
W _{el}	Electric Production	kWh
Y _{CH4}	Methane Yield	Nm³
$\Delta \text{COD}_{\text{Acetate}}$	Removed wastewater COD	g

∆COD _{mol}	Removed wastewater COD (molar)	mol
ΔoDM	Fraction of oDM digested during anaerobic process	kg
$\Delta m_{Biomass}$	Bacterial biomass metabolized in anaerobic digester	g
η_{CE}	Coulomb Efficiency	
η_{CCE}	Cathodic Conversion Efficiency	
$\eta_{electrical}$	Electrical Efficiency of CHP	

S2 Estimation of linearized MEC Polarization Curve

For the calculation of the MEC electricity demand a linearized polarization curve has been constructed based on anodic and cathodic half-cell polarization curves from literature.

In case of the anode, a polarization curve recorded with *Geobacter* sulfurreducens (using carbon electrodes) and an acetate-based medium has been considered.¹ The experimental curve has been linearized and extrapolated to a maximum current density (CD) of 2 mA/cm². Furthermore, to account for a possibly reduced performance of a mixed consortium it has been shifted towards more positive values by 50 mV. Regarding the cathode, published polarization data of MoS₂-based hydrogen evolution cathodes

operated in acidic waste water (originating from chemical production processes) have been considered.²

For linearization, the onset overpotential (approx. open circuit potential; -120 mV vs. RHE) and the approximate overpotential at a current density of 2 mA/cm² (~ - 350 mV vs. RHE) available from linear sweep experiments were taken into account. This approximation can be regarded as conservative estimate, since in long-term experiments at constant current density the MoS₂-cathodes exhibited a noticeable improved performance, as reported in the cited paper. Constructed from the individual half-cell curves the linearized overall MEC polarization curve follows the relation as depicted in the following equation (Eq. S1).

$$U_{cell} = -265 \frac{mV}{mA/cm^2} *CD - 100 mV$$
 Eq. S1

With U_{cell} = MEC cell voltage, CD = MEC current density

Figure S1: Linearized polarization curve for the wastewater MEC of the BioMethanol System.

S3 Process Data for Methanol Synthesis from CHEMCAD

Parameter	Value
Feed Reactor 1 [Nm³/h]	164.4
Feed Reactor 2 [Nm³/h]	109.7
CO_2 +CO Conversion Efficiency per pass, Reactor 1 / Reactor 2	22% / 13%
Recycling Rate, mass (Recycle/Feed)	2.1

Table S1: Additional parameters of the CHEMCAD simulation of methanol synthesis plant.

S4 Excess Sludge Formation in MEC and WWTP

Table S2: Input values for the calculation of sewage sludge formation in microbial electrolysis and activated sludge process according to Teichgräber et al.^{3 a} info of industrial operator, ^b value was chosen, so that sludge age does not affect sludge formation, ^c for 60% COD degradation in microbial electrolysis, ^d maximum value of source

Item	AS	MEC
Biomass yield [gCOD _{Biomass} /gCOD _{degraded}]	0.67 ³	0.054
Decay coefficient [d ⁻¹]	0.17 ³	0.17 ³
Temperature [°C]	12 ⁵	30 ^a
Sludge age [d]	9 ⁵	1 ^b
Influent COD [mg/L]	3,900	-
Degradable COD	-	2,340 ^c
Dry matter content of excess sludge [%]		1 ^{6,d}

The sludge formation in the wastewater treatment plant and the microbial electrolysis cell system has been estimated via a method described by Teichgräber *et al.*³ We did not have access to the report so that the methodology, as cited by Hiegemann *et al.*⁵ is shown. In the project industrial wastewater flow no particulate COD was present, so that in turn the calculations only considered soluble COD. Calculations according to **Error! Reference source not found.** to Eq. S8. For the calculations of MEC sludge formation, the metabolised COD has been inserted as degradable COD (C_{COD,deg,ZB}). Furthermore, the inert soluble COD in the influent (S_{COD,inert,ZB}) has not been considered. Otherwise the method was conducted as described using the values in **Error! Reference source not found.**:

 Inert particulate COD in the influent X_{COD,inert,ZB}[mg/L]: C_{COD,ZB} = COD influent concentration

$$X_{COD,inert,ZB} = 0.3 * (C_{COD,ZB} - S_{COD,ZB})$$
 Eq. S2

 Inert soluble COD in the influent of activated sludge process S_{COD,inert,ZB} [mg/L]:

$$S_{COD,inert,ZB} = 0.05 * C_{COD,ZB}$$
 Eq. S3

Degradable COD, C_{COD,deg,ZB} [mg/L]: X_{COD,intert,ZB} =

$$C_{COD, deg, ZB} = C_{COD, ZB} - S_{COD, inert, ZB} - X_{COD, inert, ZB}$$
 Eq. S4

Temperature factor for endogenous respiration, F_t:

$$F_t = 1.072^{(T-15)}$$
 Eq. S5

 Produced biomass, X_{COD,BM} [mg/L]: Y = growth yield, b = decay rate, t_{TSS} = sludge age [d]

$$X_{COD,BM} = C_{COD,deg,ZB} * Y * ((1/(1 + b * t_{TSS} * F_t)))$$
 Eq. S6

Inert COD of Biomass, XCOD, inert, BM [mg/L]

$$X_{COD,inert,BM} = 0.2 * X_{COD,BM} * t_{TSS} * b * F_t$$
 Eq. S7

Daily excess sludge production, ESd,C [kg TSS/d]

$$ES_{d,C} = Q_d * \left(\frac{X_{COD,inert,ZB}}{1.33} + \frac{X_{COD,BM} + X_{COD,inert,BM}}{0.92 * 1.42} + X_{inorgTSS,ZB}\right) / 1000 \quad \text{Eq.}$$

S5 Anaerobic Digestion of Sewage Sludge

Table S3: Input values for the calculation of biogas formation in anaerobic sludge digestions. ^a Cornel *et al.* (2006) as cited in indicated source, ^b German Association for Water, Wastewater and Waste as cited in listed source, Y_{CH4} = methane yield, $COD_{degraded}$ =chemical oxygen demand which is degraded in anaerobic digestion, $COD_{Biomass}$ = specific COD of one unit of biomass, oDM= organic dry matter, DM= dry matter, oDM_{degraded}= oDM degraded in anaerobic digestion

Parameter	Value	Unit
CH ₄ per COD _{degraded} (Y _{CH4} /COD)	350 ^{7,8, a}	Nm³/ t COD
COD in biomass (COD/oDM)	1.42 ³	kg COD/ kg oDM
oDM per DM (<i>oDM/DM)</i>	70 ^{8,9,b}	%
oDM _{degraded} (ΔoDM)	50 ⁸	%
Sludge concentration in	1.5	%
Sludge concentration out	3	%

For the anaerobic digestion of sewage sludge, the process parameters and outputs have been calculated using the values in S4 Excess **Sludge Formation in MEC and WWTP**

Table S2: Input values for the calculation of sewage sludge formation in microbial electrolysis and activated sludge process according to Teichgräber et al.^{3 a} info of industrial operator, ^b value was chosen, so that sludge age does not affect sludge formation, ^c for 60% COD degradation in microbial electrolysis, ^d maximum value of source

Item	AS	MEC
Biomass yield	0.673	0.054
[gCODBiomass/gCODdegraded]		
Decay coefficient [d-1]	0.173	0.173
Temperature [°C]	125	30a
Sludge age [d]	95	1b
Influent COD [mg/L]	3,900	-
Degradable COD	-	2,340c
Dry matter content of excess sludge [%]		16,d

. The sludge mass after anaerobic digestion was calculated via Eq. S9:

$$DM_{out} = Sludge DM_{in} - (DM_{in} \times oDM/DM \times \Delta oDM)$$

Eq. S9

With DM = dry matter, oDM = organic dry matter

S6 Wastewater Treatment Plant Reference System: Allocation of Aeration Electricity

In the activated sludge process of wastewater treatment, aeration is required for the oxidation of both, COD and TN, resulting in an electricity demand for an air pump $(0.2 \text{ kWh/kg COD}_{removed})$.¹⁰ The mentioned electricity demand is for the oxidation of both, COD and TN. In contrast, during microbial electrolysis, primarily COD is removed. In the LCA of the *BioMethanol* System, the MEC receives a credit from the substitution of COD treatment in the activated sludge process of conventional wastewater treatment. In order to determine the electricity demand for isolated COD- and TN-treatment in the activated sludge process, allocation is required. This has been performed via partitioning allocation based on the oxygen consumption of COD and TN during treatment. For the COD, the calculation is straight forward, as it directly represents oxygen demand (Eq. S10). However, attention needs to be paid to one detail: the bacterial sludge grows on wastewater carbon which constitutes a certain amount of COD per carbon atom. In the process of bacterial growth, the oxidation state of wastewater

carbon is altered by incorporation into bacterial biomass (and thereby also the COD per carbon atom). Therefore the COD of the bacterial biomass is unequal the COD that has been removed from wastewater for bacterial biomass build-up and cannot be directly subtracted in Eq. S10. In turn, to figure out the COD removed by bacterial growth, a factor is applied to convert the COD of bacterial biomass to acetate COD (acetate is considered to constitute wastewater COD). The factor is based on the COD per carbon atom relation in acetate and bacterial biomass ((CH_{1.8}O_{0.5}N_{0.2})_n; M = 24.6 g/mol;¹¹). For the COD of biomass an average value from Teichgräber et al.³ has been assumed (1.42 g(COD)/g(biomass)³).

$$O_2 = COD_{Carbon} = COD_{Acetate in} \times COD_r - COD_{Acetate Biomass}$$
 Eq. S10

With O₂= oxygen demand, COD_{Carbon}=chemical oxygen demand from carbon atoms, COD_{Acetate in}=acetate COD influent, CODr=COD removal rate, COD_{Acetate_Biomass}= acetate COD that is taken up by biomass growth

The oxygen required for biological TN oxidation is consumed to convert ammonia (assumed to constitute all nitrogen in wastewater) to nitrate (Eq. S11-Eq. S13). For the calculations the nitrogen content of biomass was assumed to be 7%.³

$$NH_3 + 2O_2 \rightleftharpoons NO_3^- + H^+ + H_2O$$
 Eq. S11

$$O_2 = TN_{metabolized} / M_N x 2 x M_{O2}$$
 Eq. S12

$$TN_{metabolized} = TN_{in} - TN_r - TN_{Biomass}$$
 Eq. S13

With $TN_{metabolized}$ =the TN that is oxidized to NO_3 , 2=2moles of O_2 per mole of NH₃, M_N =molar mass of nitrogen, M_{O2} =molar mass of molecular oxygen, TN_n = TN influent, TN_r =TN removal rate, $TN_{Biomoss}$ =TN taken up by bacterial growth

S7 Calculation of hardware requirements

MEC Electrodes

The electrode material demand has been calculated according to the experimental design of Kokko *et al.*² and the electrode surface of the *BioMethanol* System MEC (cf. main paper). For molybdenum, the required mass has been calculated according to the weight percentage in molybdenum sulfide.

MEC Membrane

The membrane material demand for different membrane options has been estimated by Eq. S14 using values from Table S4.

$$m_{material} = \rho_{material} * d_{membrane} * A_{membrane}$$
 Eq. S14

With $m_{material}$ =membrane material mass, $\rho_{membrane}$ =membrane material density, $d_{membrane}$ =membrane thickness, $A_{membrane}$ =MEA surface

MEC Housing & Current Collectors

The material needs for MEC housing were estimated based on a lab scale MEC in flat-plate design. Per cell, two endplates made from 2.5 mm thick polypropylene sheets with a total weight of $5 \text{ kg/m}^2_{\text{MEA}}$ have been considered. Furthermore, each cell is equipped with two current collector meshes (80% open area) made

either from 650 μ m stainless steel (V2A) or 550 μ m copper, corresponding to 2 kg of current collector material per m²_{MEA}.

MEC Power Electronics

The weight of the power electronics is 500 kg/10kA, as stated in the product datasheets.¹² In the LCA, the power electronics have been modelled with the Ecoinvent processes "market for inverter, 2.5 kW [GLO]" and "market for transformer [GLO]". The inverter process gives an output according to power [kW], while the transformer process gives an output in mass [kg]. To depict the hardware needs of the MEC power electronics, the product mass of the inverter process "market for inverter, 2.5 kW [GLO]" to cater for 45 kW electrolysis (plus little extra) have been calculated. The rectifier mass has been subtracted from the expected total mass. The remainder was modelled as the material demand for the process "market for transformer [GLO]".

Gas Cleaning

The requirements for gas cleaning have been modelled in orientation to supplier data for activated carbon filters for biogas plants.¹³ According to the supplier, the consumption of activated carbon shows a linear dependency on volumetric flow and the respective H_2S -impurities. The base data was: 50 kg/month at a volumetric flow of 120 m³/h and 200 ppm. Accordingly, the activated carbon consumption has been calculated for the volumetric flow of the MEC output gases. Furthermore, the electricity consumption of a ventilator was estimated (15-21 kWh/a).

Biogas Plant & Sludge Press

The material needs for the construction of the biogas plant & sludge press have been calculated from the inventory of Foley *et al.*¹⁴ with applications of different capacity. The material demand from the reference was scaled:

- For the biogas plant according to necessary surface area. Therefore the required plant volume for the *BioMethanol* System was calculated by multiplying excess sludge output per day with sludge retention of 25 days. The surface area was then calculated assuming a cylindrical body of 10 m height.
- The sludge press was scaled according to the sludge output per day (using the average value in reference).

Methanol Plant: Reactor, Heat Exchanger, Distillation, Catalyst

The required catalyst mass for methanol synthesis was calculated via catalyst volume. Volume was calculated by Eq. S15. The feed gas volume was obtained from CHEMCAD simulation (Table S1). A standard GHSV of $10,000^{-d}$ and catalyst density of 1.2 kg/L were

applied.¹⁵ Furthermore, the catalyst volume was assumed to be 80% of reactor volume. Catalyst composition was assumed to be 68 wt% CuO, 23 wt% ZnO and 9 wt% Al_2O_3 in orientation to Ref.¹⁵

$$GHSV = \frac{Vcat}{Vgas}$$
 Eq. S15

With GHSV= gas hourly space velocity, Vcat=volume of the catalyst, Vgas=volume flow of the feed-gasin Nm³

The heat exchanger surface necessary for heat integration of synthesis and distillation was estimated from CHEMCAD data and resulted in 7.3 m² surface area. The material requirements of the reactors and distillation have not been specified. For the economic assessment the costs were taking into account via supplier data and cost functions (cf. S8). For LCA, the dataset *"market for methanol factory [GLO]"* from Ecoinvent v. 3.4 has been considered.

For the calculation of the capacity of wastewater- & sludge pumps for the microbial electrolysis cell, the equations Eq. S16 & Eq. S17 and values in

Table S5Table S5 have been used. For both pumps the calculated pump capacity has been increased to an available pump size of a 5.5 kW.¹⁶ The operation time of the sludge pump has been assumed to be 1h per week or 52 hours per year in orientation to Foley *et al.*¹⁴.

$$P_{WWPump} = \frac{P_{WWPump_Foley}}{V_{Foley}} * V_{BioMethanol}$$
Eq. S16

$$P_{SludgePump} = \frac{P_{SludgePump_Foley}}{\dot{m}_{Sludge_Foley}} * \dot{m}_{sludge_BioMethanol} \qquad \text{Eq. S17}$$

With Px.Pump= pump capacity of pump X, Px.Pump_Foley= pump capacity in Foley et al.¹⁴ for pump X, V_{Foley}= wastewater volume flow in Foley et al.¹⁴, V_{BioMethanol}= wastewater volume flow in BioMethanol system, m_{sludge_Foley} = sludge mass flow in

in Foley et al.¹⁴, msudge_BioMethanol= sludge mass flow in BioMethanol system

Sludge & Wastewater Pumps

ARTICLE

Table S4: Input values for the calculation of material needs for the microbial electrolysis cell membrane. ^aassumption based on membrane used by project partners fumasep® FAA-3-PK-130

Material	Density [g/cm³]	Weight[g/cm ²]	Thickness [µm]
Nafion/PTFE ¹⁷	-	43	22
Polysulfone ¹⁸	1.24	-	130 ^a

Table S5: Parameters for the calculation of required wastewater- & sludge pump capacity for the microbial electrolysis cell system. ^aaverage of source

Parameter	Foley <i>et al.,</i> 2010 ¹⁴	BioMethanol
Wastewater stream [m ³ /d]	2,200	950
COD conc. [mg/L]	4,000	3,900
Wastewater pump [kW]	11	4.75
Sludge after press [t/d]	6.65 ^ª	0.144
Sludge pump [kW]	15	0.3

S8 Details on Prices, Costs & Revenues

The currency exchange rates that have been used can be found in Table S6.

Table S6: Currency exchange rate from Euro to Dollar for the years 2005-2016¹⁹

Year	Euro [€] in Dollar [\$]
2005	1.244
2006	1.256
2007	1.371
2008	1.471
2009	1.395
2010	1.326

2011	1.392
2012	1.285
2013	1.328
2014	1.329
2015	1.11
2016	1.107

Investment Cost Factors

For the microbial electrolysis cell system and methanol synthesis + distillation the cost factors described in Table S7 have been applied. The abbreviations listed in the table are used in the following cost formulae. A contingency factor of 10% has been applied to total investment.

Table 57: Cost factors topped up on system costs. MEC=microbial electrolysis cell, ^a internal information from course on cost estimation by German DECHEMA^c assumed safety factor

Other factors	Price	Note	
Piping + measurement & control (<i>pmc</i>)	1.75 ²⁰	Factored on reactor costs (MEC), and total material costs	
		(methanol synthesis)	
Installation (<i>i</i>)	1.15 ²⁰	Factored on total investment	
Planning (p)	1.08 ^ª	Factored on total investment	
Contingency (c)	1.1 ^c	Safety factor, factored on total investment	

Investment Costs for Microbial Electrolysis Cell System

The cost details for the calculation of microbial electrolysis investment costs can be found in Table S8. On top of the reactor costs the factors for piping and measurement and control as specified in Table S7 have been applied.

 Table S8: Cost details for the components of the microbial electrolysis cell system, as considered in the *BioMethanol* System. MEA=Membrane electrode assembly; MEC=microbial electrolysis cell

MEA	Price [€/m²]	Note			
MEA price moderate ²¹	100	Estimate for production of >30.000 m ²			
MEA price optimistic ²²	7	In orientation to cost goal of source			
MEA costs = MEA price x MEC electrode surface (Eq. S18)					
MEC Reactor Component	Price/Factor	Note			
Polypropylene Endplates (E)	5.5 €/m² _{MEA}	5 kg _{Polypropylene} /m ² _{MEA} ²³			
Current collector steel (CC)	3.5 €/m² _{MEA}	2 kg _{steel} /m ² _{MEA} (cf. A6) with a cost of 1.75 €/kg _{steel} in orientation to manufactured V2A steel products ²⁴			

Current collector copper (CC)	10 €/m² _{MEA}	2 kg _{Copper} /m ² _{MEA} (cf. A6) with a cost of 5 €/kg _{Steel} in orientation to copper raw material price ²⁵			
Factor for manufacturing ²⁶ (f1)	1.25x	manufacturing and profit for endplates and current collectors			
MEC reactor costs = $(E + CC) \times MEC$ electrode surface x f1 (Eq. S19)					
MEC Assembly Component	Price/Factor	Note			
Wastewater pump ¹⁶ (P1) Sludge pump ¹⁶ (P2)	4,300€	Per pump 5,5 kW			
Rectifier & transformer ¹² (R1)	287,000€	For 130 kA capacity			
MEC reactor & assembly costs = $[(MEC reactor costs x pmc) + P1 + P2 + R1] x i x p$ (Eq. S20)					

Investment Costs for Gas Cleaning

 Table S9: Cost details for the components of gas cleaning considered in the BioMethanol System.

Gas Cleaning	Price	Note			
Activated Carbon ¹³	3€/kg	50 kg/month @ 120 m³/h, 200 ppm H ₂ S			
Activated Carbon Container ¹³	11,000€	500 kg capacity for consumption of 50 kg/month; scaled by six-tenth power rule according to monthly consumption			
Activated Carbon Costs = $3 \in /kg * [(50 kg*month-1 / 120m3/h x 200 ppm H2S)* (Volumetric Flow*H2S content)]*(8,500h/8760h)$					
Activated Carbon Container = 11,000€ * (Activated Carbon Consumption/50 kg*month ⁻¹)^(2/3)					

Investment Costs for Compressors

The costs for compression are based on vendor requests at a different capacity and listed in Table S10.

Table S10: Cost details of the components of compression and methanol synthesis considered in the BioMethanol system.

Compressor	Request	Final price	Note			
H.	45,000 ²⁷ €	53,800 €				
112	(2 stages, 2.5 kW)	(4 stages, 8.7 kW)	Scaling by six tenth power rule, 25% top up from tw	o to four stage		
<u> </u>	18,000 ²⁷ €	38,300€	compressor assumed			
	(2 stages, 9,2 kW)	(4 stages, 2.9 kW)				
<u> </u>	18.000 ²⁷ €	34,800€				
(2	(2 stages, 9,2 kW)	(2 stages, 3.5 kW)	Scaling by six tenth power rule			
Posiculation	25,000 ²⁷ €	7,600€				
Recirculation	(2.7 kW)	(0.45 kW)				
Nev	v price = Old price x (ne	w capacity/old capacity)	^(2/3) x 25% top up for stage difference	(Eq. S21)		

Investment Costs for Methanol Synthesis & Distillation

 Table S11: Cost details of components of methanol synthesis & distillation considered in the BioMethanol System.

Component	Request	Final price	Note
-----------	---------	-------------	------

Reactor ²⁸	5,000 € (64.7 L)		1	,500 € & ,000 €	Scaling by six tenth power rule, new reactor size:	5 11 & 16.4 L
Heat exchanger ^{29,30}	-		6	,500 €	Scaling by six tenth power rule, CEPCI & current applied; from the publications the following values 32.800 \$/80m ² // 30.000\$/112.5m ²	y exchange have been used
New price reactor = Old price x (new volume/ old volume) ^(2/3)					(Eq. S22)	
New price heat exchanger = [price from source x (surface / surface in source) ^(2/3)] /CEPCI _{t0} * CEPCI _{t1}			(Eq. S23)			
Component		Pri	се		Note	
Methanol reactor fittir	ngs (<i>fc</i>)	5,00	€ 00		Assumption	
Methanol synthesis ca	atalyst	100 4	€/kg	In source 2.5 kg 150€/kg ³¹ ; assumption: price drops for more purcha		
Distillation colum	in	13,7	00€	1.6 x reactor costs ³²		
		Cataly	st costs =	catalyst mass	x catalyst price	(Eq. S24)
	Distillation column costs = 1.6 x (methanol synthesis reactor costs + fc)				(Eq. S25)	

Operational Expenses

The operational expenses have been calculated according to the values in Table S12. Electricity prices varied with each market scenario as specified in the main paper.

 Table S12: Cost details for operational costs of the BioMethanol system.

Product	Price	Note				
CO ₂ Purchase	100 €/t	Compromise of source values, CO_2^{33-35}				
CO ₂ Storage Tank Rent	10,000 €/a	Assumption based on request at Linde Gas AG. ³³ For reduced CO_2 demand a linear price decrease assumed				
CO ₂ purchase cost	CO_2 purchase costs = CO_2 demand x (100% - CO_2 from MEC) * specific CO_2 purchase price (Eq. S26)					
CO ₂ storage costs = 10,000 € * (100% - CO ₂ from MEC) (Eq. S27)						
Maintenance & Insurance ²⁰ 4.5 %/a Of system investment costs						
Maintenance & insurance costs = total investment x 4.5%(Eq. S28)						
Staff	26,000 €/a	2 h/d á 50€/h, 5 days per week, 52 weeks/a ¹⁰				
MEA cost degression ³⁶ (d)	4 %/a	Assumption: every 5 years MEA needs to be exchang	ed			
	MEA cost (year t) = MEA costs (year=0) x $(1-d)^{t}$	(Eq. S29)			
Sludge press ⁶	9.5 €/t sludge	Average value of source for mobile sludge press				
Sludge transport ³⁷	21.4 €/m³	-				
Sludge treatment ³⁸	89.3 €/t	Costs at dry matter content of 27.5%				
Sludge Disposal Costs =	Sludge volume/mag	ss x specific treatment costs (press, transport, treatment)	(Eq. 30)			

Revenues

The prices and formula that were used for the calculation of the *BioMethanol* System revenues are illustrated in Table S13.

 Table S13: Details on BioMethanol system revenues.

ltem	Price	Note		
WW savings ³⁹	0.35 €/m³	COD removal of 60% and a nitrogen removal of 7% of organic excess sludge		
Methanol	400/560/650 €/t	Assumed prices based on historic development ⁴⁰		

Journal Name

H_2^{26}	3.82 €/kg		
WW savings	(Eq. S31)		
M	(Eq. S32)		

S9 System Process Representation in Ecoinvent v.3.4

Table **\$14** lists the hardware requirements of the *BioMethanol* System and their representation with background processes from Ecoinvent v.3.4. Furthermore, the process representation is rated in a semi-quantitative manner and as described in table caption. Four reasons for the ratings are defined as following:

- <u>Different process capacity</u>: the Ecoinvent process represents the desired process but considers a different capacity. For that reason, scale effects are not taken into account.
- <u>Average process:</u> the Ecoinvent process Includes material and energy demand of a non-specified, average process
- <u>Different material:</u> the Ecoinvent was used as a proxy process as no process for the desired material was available
- Manufacturing not considered

Material/process	Ecoinvent 3.4 process representation	R	Rating Reason
Water & sludge pump	Market for pump 40W [GLO]	2	Different Capacity
Rectifier	Market for inverter. 2.5 kW [GLO]	2	Different Capacity
Transformer	Market for transformer [GLO]	3	Different capacity
Polypropylene	Market for polypropylene, granulate [GLO]	1	
Injection moulding, polypropylene	Injection moulding [RER]	2	Average process
Stainless steel	Market for steel, chromium steel 18/8 [GLO]	2	Different material
Current collector production	metal working, average for chromium steel product	2	Average process
Current collector production	manufacturing [RER]	2	
Carbon nanotubes	Market for graphite [GLO]	3	Different material
	Market for molybdenum [GLO]		Different material, No
Morybaenam samae			manufacturing
Nafion membrane	Market for tetrafluoroethylene film, on glass [GLO]		Different material, no
Nation membrane			manufacturing
Polysulfone membrane	Polysulfone production, for membrane filtration	2	Different material, no
Polysuitone membrane	production [GLO]	5	manufacturing
Mild steel	Market for steel, low-alloyed [GLO]	1	
Stainless steel	Market for steel, chromium steel 18/8 [GLO]	1	
Production of steel products	Metal working, average for steel product manufacturing	2	Average process

Table S14: BioMethanol System process representation in Ecoinvent 3.4 database. Rating (R) as following: 1 = very good process representation, 2 = process representation ok, 3 = process representation a rough estimate, 4= poor process representation

	[RER]		
Transport	Transport, lorry 16-32t, EURO4 [RER]	1	
Gas compressors	Market for air compressor, screw type compressor, 4kW [GLO]	3	Different process
CuO	Market for copper oxide [GLO]	2	No manufacturing
ZnO	Market for zinc oxide [GLO]	2	No manufacturing
AIO ₃	Market for aluminum oxide [GLO]	2	No manufacturing
Methanol factory	Market for methanol factory [GLO]	4	Different capacity
Average			

S10 Estimation of Input Data Quality

Table S15 lists the input data of the process analysis and estimates its quality.

 Table S15: Data quality of input data for the process evaluation. Rating categories are as following: 1=good, 2=ok, 3=rough estimation, 4=poor data quality, ?

 = no data quality judgement possible, ** primary source not accessible

ltem	Source	Rating	Reason
COD removal efficiency	Experimental data	1	
Coulomb efficiency	Literature Data	1	
Cathodic Conversion efficiency	Experimental data	1	
Current Density	Presupposition	?	
Cell Voltage	Based on experimental & literature data	2	
MEC Housing & Current collectors	Experimental data	1	
Membranes	Experimental data and other sources (see S7)	3	Estimation
Methanol yield	CHEMCAD simulation	2	
Carbon dioxide demand	CHEMCAD simulation	2	
Compressor electricity	CHEMCAD simulation	2	Isentropic compression
Excess heat	CHEMCAD simulation	2	
Heat exchanger surface	CHEMCAD simulation	3	Estimation
Sludge formation WWTP	3	2	Estimation
Sludge formation MEC	3	3	Estimation
Sludge pump electricity	Own calculations based on ref ¹⁴	2	Estimation
Wastewater pump electricity	Own calculations based on ref ¹⁴	2	Estimation
Sludge organic dry matter per dry matter	DWA,2003** as cited in ref ⁸	2	Average
COD per organic dry matter sludge	3	2	Average
oDM degradation in biogas digester	8	2	Average
Methane yield per COD in biogas digestion	Cornel,2006** in ref ⁸	2	Average
Methane lower heating value	41	1	
CHP electrical efficiency	based on ref ⁴²	2	Estimation
Activated Carbon Demand	Supplier Data ¹³		

Biogas digester steel demand	Own calculations based on ref ¹⁴	4	Weak data basis
Cooling pump electricity	Own calculation	3	Weak data basis
Sludge screw press electricity	6	2	Average
Sludge screw press steel demand	Own calculations based on ref ¹⁴	4	Weak data basis
Sludge incineration efficiency (el)	42	2	Average
WWTP aeration electricity &	W/WTP Poforonco with project partner data	1	
COD/TN removal efficiency		1	
WWTP electricity for other steps	43	2	Average
Distance to sludge treat. after MEC	Google maps	1	
Transport to incineration plant	Assumption	4	Assumption
Rectifier & Transformer Efficiency	Supplier Data ¹²	3/A	
Grid hardware for renewable	Ecoinvent v 3 3	3	Average assumption
energy mix production		5	
CO ₂ formation	Stoichiometric calculation	2	
Sludge dry matter after MEC/AS	6	2	Average
Sludge dry matter after storage	Assumption	4	Assumption
Sludge dry matter after digestion	44	3	Company data
Sludge dry matter after press	6	2	Average
Sludge dry matter after sludge	6	2	
drying		2	Avelage

S11 Influence of the Assumption of Wastewater Composition on Life Cycle Assessment Results

Table S16: LCA results for the consideration of a carbon source with oxidation state -4 (CH₄) in the wastewater stream of the WWTP Reference System. The values are rounded to the decimal at which a difference between the case for Acetate and CH₄ can be identified.

	Unit	Ref	B	ase		Best	V	Vorst
			Ac-	CH_4	Ac-	CH_4	Ac-	CH_4
GWP	kg CO ₂ Eq/t t _{CH3OH}	560	-815	-810	-1,010	-1,000	-622	-618
ТАР	kg SO ₂ Eq/t t _{снзон}	1.6	2.62	2.65	1.81	1.86	3.39	3.41
POFP	kg NMVOC Eq/t _{снзон}	1.8	1.21	1.23	0.43	0.47	1.8	1.81
FEP	kg P-Eq/t t _{снзон}	0.1	0.727	0.731	0.587	0.595	0.924	0.927
MDP	kg Fe-Eq/t t _{снзон}	30	234	236	172	175	332	334
CEDF	GJ/t t _{снзон}	33.8	7.59	7.65	4.57	4.7	10.9	10.95
CEDT	GJ/t t _{снзон}	34.2	20.6	21.1	14.6	15.7	24	24.5

Table S17: LCA results for the consideration of a carbon source with oxidation state +3 (CO) in the wastewater stream of the WWTP Reference System. The values are rounded to the decimal at which a difference between the case for Acetate and CO can be identified.

	Unit	Ref		Base		Best	V	Vorst
			Ac-	СО	Ac-	CO	Ac-	CO
GWP	kg CO ₂ Eq/t t _{CH3OH}	560	-815	-816	-1,010	-1,012	-622	-624
ТАР	kg SO ₂ Eq/t t _{CH3OH}	1.6	2.62	2.61	1.81	1.79	3.39	3.39
POFP	kg NMVOC Eq/t _{снзон}	1.8	1.21	1.2	0.43	0.42	1.8	1.79
FEP	kg P-Eq/t t _{снзон}	0.1	0.727	0.726	0.587	0.585	0.924	0.923
MDP	kg Fe-Eq/t t _{снзон}	30	234.2	233.6	172	170	332.4	331.9
CEDF	GJ/t t _{CH3OH}	33.8	7.59	7.57	4.57	4.54	10.9	10.88
CEDT	GJ/t t _{снзон}	34.2	20.6	20.5	14.6	14.3	24	23.9

For the process evaluation, the industrial wastewater COD has been considered to consist of acetate (cf. 3.11. main paper). Furthermore, in the allocation of aeration electricity in the WWTP Reference System (cf. S6) the same assumption has been made. However, for the

municipal wastewater treatment process, the validity of this assumption is less justified than for the industrial wastewater. As described in S6, the chemical composition of COD has an effect on Eq. S10, in exact: on the COD that is removed via bacterial biomass growth.

In the calculations of S6, a different oxidation state of the wastewater carbon (resulting in a different COD per carbon atom) leads to more or less COD consumption by bacterial biomass growth (via the incorporation of carbon atoms in bacterial biomass). Thereby, in the partitioning allocation of aeration electricity to COD/TN (cf. S6), a different wastewater carbon species leads to a different share of electricity being allocated to COD/TN oxidation. As the *BioMethanol* System primarily treats COD, a different credit results via the substitution of conventional wastewater treatment (in the LCA *"avoided burden approach"*). In order to check on the sensitivity of LCA results on the assumption of wastewater carbon species being acetate, the following consideration, leading to sensitivity analysis have been made:

- The carbon atoms in acetate depict an oxidation state of zero
- In order to investigate the sensitivity of the acetate assumption, two extreme cases with a carbon oxidation state of -4 (CH₄) and +3 (CO) have been calculated and their effect on LCA results checked
- In this investigation the operation of the *BioMethanol* System and WWTP Reference System has been modeled with renewable electricity mix e2

The results can be found in

Table **\$16** &

 Table S17. As can be observed the results only have a minor influence on LCA results. The small change in impact results primarily from the low overall impact of the renewable electricity source e2 for wastewater treatment.

S12 Life Cycle Inventory

In the following the life cycle inventory for the *BioMethanol* System is listed (base case). The components in light gray have not been considered in the LCA model. Some values contain many decimals for the calculation of mass balances.

BioMethanol: Wastewater pump						
Input Value Unit Source						
Wastewater	336.5	Mt/a	Project data			
Electricity	46.75	MWh/a	cf. S7			
Market for pump, 4W [GLO]	6.9	Units	Ecoinvent v.3.4			
Output	Value	Unit	Source			
Wastewater	336.5	Mt/a	Project data			

BioMethanol: Sludge pump 1					
Input	Value	Unit	Source		
Sludge (99%H ₂ O)	2,230	t/a	cf. S4		
Electricity	0.29	MWh/a	cf. S7		
Market for pump,40W [GLO]	6.9	Units	Ecoinvent v.3.4		
Output	Value	Unit	Source		
Sludge (99%H ₂ O)	2,230	t/a	cf. S4		

BioMethanol: Sludge pump 2					
Input Value Unit Source					
Sludge (98.5%H ₂ O)	1,490	t/a	cf. S4 (dewatered)		

Journal Name

Electricity	0.29	MWh/a	cf. S7
Market for pump,40W [GLO]	6.9	Units	Ecoinvent v.3.4
Output	Value	Unit	Source
Sludge (98.5%H ₂ O)	1,490	t/a	cf. S4 (dewatered)

BioMethanol: Power electronics for microbial electrolysis cell					
Input Value Unit Source					
Electricity	428	MWh/a	Efficiency according to Supplier Data ¹²		
Output	Value	Unit	Source		
Electricity	385	MWh/a	cf. 3.1.2 (main paper)		

BioMethanol: Power electronics hardware				
Input	Source			
Rectifier	0.925	Units/a	Market for inverter, 2.5kW [GLO]; Ecoinvent v.3.4	
Transformer	293.2	kg/a	Market for transformer, 2.5kW [GLO] ; Ecoinvent v.3.4	

Microbial electrolysis cell: Hardware					
Input	Value	Unit	Source		
Polypropylene	3.1	t/a			
Stainless steel mesh	1.24	t/a			
Carbon Nanotubes	0.06	t/a	of S7		
Molybdenum	3	kg/a	UI. 37		
Membrane1:Polysulfone	0.4	t/a			
Membrane2: PTFE	0.11	t/a			

Microbial electrolysis cell: Operation					
Input	Value	Unit	Source		
COD	1,312.188	t/a	Project data		
Total Nitrogen	140.976	t/a	Project data		
Water	336,458.333	t/a	Project data		
Electricity from electricity source	375.5	MWh/a	cf. 3.1.2 (main paper)		
Electricity from CHP	9.6	MWh/a	cf. 3.1.6 (main paper)		
Output	Value	Unit	Source		
COD	524.875	t/a	60% COD removal assumed		
Total Nitrogen	139.884	t/a	7% N in biomass assumed ³		
Water	336,015.077	t/a	Stoichiometric calculation		
Hydrogen	35.711	t/a	cf. Eq. 10 (main paper)		
Carbon Dioxide	1,054.954	t/a	cf. Eq. 13 (main paper)		
Protons _{aq}	30.927	t/a	Stoichiometric calculation		
Sludge (99%H ₂ O)	22.289	t dry matter /a	cf. S4		
Input mass	337,911.5	t/a			
Output mass	337,823.7	t/a			
Difference	0.03%	Of input mass			

BioMethanol: Gas cleaning			
Input	Value	Unit	Source
Activated Carbon	310	kg/a	Supplier Data ¹³
Electricity	21	kWh/a	Estimation cf. S7

BioMethanol: Sludge storage			
Input	Value	Unit	Source
Sludge (99%H ₂ O)	2,230	t/a	cf. S4
Output	Value	Unit	Source
	1 400	1,490 t/a	cf. S4 (1.5% dry matter after
Sludge (38,370120)	1,490		storage assumed)
Water	740	t/a	Difference of the above

BioMethanol: Biogas digester			
Input	Value	Unit	Source
Sludge (98,5%H ₂ O)	1,485.914	t/a	cf. S4 (dewatered)
Electricity	1.93	MWh/a	cf. 3.1.5 (main paper)
Mild steel	675.7	kg/a	cf. S7
Stainless steel	16	kg/a	cf. S7
Output	Value	Unit	Source
Sludge (97%H ₂ O)	482.922	t/a	cf. S4 (dewatered)
Methane	2.775	t/a	cf. 3.1.5 (main paper)
			cf. Eq. 16 (main paper)r
Carbon Dioxide	6.329	t/a	(stoichiometric CO ₂ formation
			in CH ₄ oxidation subtracted)
			Difference sludge mass input
Water	993.888	t/a	and sludge, methane, carbon
			dioxide output

BioMethanol: Sludge press			
Input	Value	Unit	Source
Sludge (97%H ₂ O)	482.922	t/a	cf. Eq. S9
Electricity	0.12	MWh/a	Based on data from ⁶
Stainless steel	2.24	kg/a	cf. S7
Output	Value	Unit	Source
Sludge (72,5%H ₂ O)	52.682	t/a	cf. Eq. S9 (dewatered)
Water	430.24	t/a	Difference in sludge mass

BioMethanol: Transport of excess sludge to sludge treatment			
Input	Value	Unit	Source
Sludge (72,5%H ₂ O)	52.7	t/a	cf. Eq. S9 (dewatered)
Transport	1,300	t*km/a	Distance (maps) x weight
Output	Value	Unit	Source
Sludge (72,5%H ₂ O)	52.7	t/a	cf. Eq. S9 (dewatered)

BioMethanol: Methane burning in combined heat & power plant			
Input	Value	Unit	Source
Methane	2.8	t/a	cf. 3.1.5 (main paper)
Oxygen from air	11	t/a	Stoichiometric calculation
Output	Value	Unit	Source
Electricity	12.8	MWh/a	cf. 3.1.6 (main paper)
Carbon Dioxide	7.6	t/a	Stoichiometric calculation
Water	6.2	t/a	Stoichiometric calculation

Journal Name

Input mass	13.8	t/a	
Output mass	13.8	t/a	
Difference	0%	Of input mass	

BioMethanol: Sludge treatment after microbial electrolysis cell			
Input	Value	Unit	Source
Sludge (72,5%H ₂ O)	52.7	t/a	cf. Eq. S9 (dewatered)
Electricity from German Grid	4.2	MWh/a	3.1.10 (main paper)
Output	Value	Unit	Source
Sludge (15%H ₂ O)	17	t/a	Eq. S9 (dewatered)
Water	35.7	t/a	Difference in sludge mass

BioMethanol: Transport of excess sludge from sludge treatment to incineration			
Input	Value	Unit	Source
Sludge (15%H ₂ O)	17	t/a	cf. Eq. S9 (dewatered)
Transport	3,409	t*km/a	200 km transport assumed
Output	Value	Unit	Source
Sludge (15%H ₂ O)	17	t/a	cf. Eq. S9 (dewatered)

BioMethanol: Sludge incineration				
Input	Value	Unit	Source	
Sludge (15%H ₂ O)	17	t/a	cf. Eq. S9 (dewatered)	
Oxygen from air	11.077	t/a	Corresponding to COD _{Biomass}	
Output	Value	Unit	Source	
Electricity	9.2	MWh/a	cf. 3.1.8 (main paper)	
Incinoration Ach	6 6 9 7	t/2	Non-organic sludge	
incineration Asir	0.087	i/a	components cf. S5	
Carbon Dioxide	12 0/1	t/a	Stoichiometric relation in	
	13.941	t/ a	oxidation of biomass cf. 3.1.9	
Water	6 566	+/>	Stoichiometric calculation cf.	
vvalei	water 0.566 t/a	3.1.9		
NO. (filtered not emitted)	2.915	t/2	Stoichiometric calculation cf.	
NO_2 (intered, not efficient)		t/ d	3.1.9	
Input mass	28.1	t/a		
Output mass	30.1	t/a		
Difference	6.6%	Of input mass		

BioMethanol: Hydrogen compression			
Input	Value	Unit	Source
Hydrogen @ 1 bar	35.7	t/a	cf. Eq. 8 (main paper)
Electricity	74.03	MWh/a	CHEMCAD simulation
Output	Value	Unit	Source
Hydrogen @ 50 bar	35.7	t/a	cf. Eq. 8 (main paper)

Heat	53.9	MWh/a	CHEMCAD simulation

BioMethanol: Carbon dioxide compression from 1 bar			
Input	Value	Unit	Source
Carbon Dioxide @ 1 bar	286.5	t/a	CHEMCAD simulation
Electricity	24.5	MWh/a	CHEMCAD simulation
Output	Value	Unit	Source
Carbon Dioxide @ 50 bar	286.5	t/a	CHEMCAD simulation
Heat	19.4	MWh/a	CHEMCAD simulation

BioMethanol: Carbon dioxide compression from 9 bar			
Input	Value	Unit	Source
Carbon Dioxide @ 9 bar	286.5	t/a	CHEMCAD simulation
Electricity	29.8	MWh/a	CHEMCAD simulation
Output	Value	Unit	Source
Carbon Dioxide @ 50 bar	286.5	t/a	CHEMCAD simulation
Heat	24.7	MWh/a	CHEMCAD simulation

BioMethanol: Compression hardware			
Input	Value	Unit	Source
Hydrogen Compressor	0.11		Market for air compressor,
Carbon Dioxide Compressor	0.04	Units/a	GLO]; Ecoinvent v.3.4

BioMethanol: Methanol synthesis & distillation: operation			
Input	Value	Unit	Source
Hydrogen @ 50 bar	35.7	t/a	cf. Eq. 10 (main paper)
Carbon Dioxide @ 50 bar	286.5	t/a	CHEMCAD simulation
Electricity recirc. compressor	3.8	MWh/a	CHEMCAD simulation
Output	Value	Unit	Source
Methanol (99.85wt%)	185.255	t/a	CHEMCAD simulation
Water	106.014	t/a	CHEMCAD simulation
Methanol in purge	3.886	t/a	CHEMCAD simulation
Hydrogen in purge	0.064	t/a	CHEMCAD simulation
Carbon dioxide in purge	26.644	t/a	CHEMCAD simulation
Water in purge & methanol	0.332	t/a	CHEMCAD simulation
Heat	136	MWh/a	CHEMCAD simulation
Input mass	322.2	t/a	
Output mass	322.2	t/a	
Difference	0%	Of input mass	

BioMethanol: Methanol synthesis & distillation hardware			
Input	Value	Unit	Source
CuO	5.7	kg/a	cf. S7
ZnO	1.9	kg/a	cf. S7
AIO3	0.75	kg/a	cf. S7
Methanol factory	6.85*10 ⁻⁶	Units/a	Market for methanol factory [GLO]; Ecoinvent 3.4

BioMethanol cooling: case CO ₂ from microbial electrolysis			
Input	Value	Unit	Source
Heat	209.3	MWh/a	CHEMCAD simulation
Electricity	1.87	MWh/a	cf. 3.1.7 (main paper)
Output	Value	Unit	Source
Heat	209.3	MWh/a	CHEMCAD simulation

BioMethanol cooling: case purchased CO ₂			
Input	Value	Unit	Source
Heat	214.6	MWh/a	CHEMCAD simulation
Electricity	1.92	MWh/a	cf. 3.1.7 (main paper)
Output	Value	Unit	Source
Heat	214.6	MWh/a	CHEMCAD simulation

Wastewater Treatment Plant Reference: Removal of chemical oxygen demand (COD)				
Input	Value	Unit	Source	
COD	1,352.3	t/a	Project data	
Electricity Aeration COD	198.7	MWh	cf. S6	
Electricity Sludge Recirculation & Settler	64.2	MWh	cf. 3.1.10 (main paper)	
Oxygen from air	907.2	t/a	Stoichiometric calculation	
Output	Value	Unit	Source	
COD	64.9	t/a	COD removal according to	
eob			data from WWTP Project data	
Carbon dioxide	1,247.73	t/a	cf. Eq. 13 (main paper)	
Sludge (99%H2O)	418	t dry matter/a	Cf. 3.1.4 (main paper)	
Wator	Water 510.757 t/a	+/2	Stoichiometric calculation	
Water		(acetate oxidation)		
Input mass	2,259.5	t/a		
Output mass	2,241.4	t/a		
Difference	0.8%	Of input mass		

Wastewater Treatment Plant Reference: Removal of total nitrogen (TN)			
Input	Value	Unit	Source
Total Nitrogen (TN)	145.3	t/a	Project Data
Electricity Aeration TN	82.2	MWh	cf. S6
Output	Value	Unit	Source
Total Nitrogen	28.6	t/a	TN removal according to data from WWTP Project data

Nitrogen in sludge	20.5	t/a	7% N in sludge assumed ³
Nitrogen, molecular	96.2	t dry matter/a	Difference in TN mass

Wastewater Treatment Plant Reference: Biogas digestion & sludge drying			
Input	Value	Unit	Source
Sludge (99%H2O)	41,801	t/a	cf. S4
Electricity	115.3	MWh	cf. 3.1.10 (main paper)
Output	Value	Unit	Source
Sludge (15%H2O)	319.7	t/a	cf. Eq. S9
Methane	52	t/a	cf. Eq. 11 (main paper)
			cf. Eq. 16 (main paper;
Carbon dioxide	118.7	t/a	stoichiometric CO ₂ formation
			in CH ₄ oxidation subtracted)
			Difference sludge mass input
Water	41,311	t/a	and sludge, methane, carbon
			dioxide output

Wastewater Treatment Plant Reference: Methane burning in combined heat & power plant			
Input	Value	Unit	Source
Methane	52.044	t/a	cf. Eq. 11 (main paper)
Oxygen	207.614	t/a	Stoichiometric calculations
Output	Value	Unit	Source
Electricity	239.2	MWh/a	cf. Eq. 12 (main paper)
Carbon dioxide	142.772	t/a	Stoichiometric calculations
Water	116.887	t/a	Stoichiometric calculations
Input mass	259.7	t/a	
Output mass	259.7	t/a	
Difference	0 %	Of input mass	

Wastewater Treatment Plant Reference: Transport excess sludge to incineration				
Input	Value	Unit	Source	
Sludge (15%H ₂ O)	319.7	t/a	cf. Eq. S9 (dewatered)	
Transport	63,900	t*km/a	200 km transport assumed	
Output	Value	Unit	Source	
Sludge (15%H ₂ O)	319.7	t/a	cf. Eq. S9 (dewatered)	

Wastewater Treatment Plant Reference: Sludge incineration					
Input	Value	Unit	Source		
Sludge (15%H ₂ O)	319.66	t/a	cf. Eq. S9 (dewatered)		
Oxygen	207.752	+/2	Corresponding to biomass		
		l/a	COD		
Output	Value	Unit	Source		
Incineration Ash	125.403	+/2	Non-organic sludge		
		t/d	components cf. S5		
Electricity	172.5	MWh/a	cf. 3.1.8 (main paper)		
Carbon dioxide	261.46	t/a	Stoichiometric calculation		
			oxidation of biomass cf. 3.1.10		
Water	123.14	t/a	Stoichiometric calculations cf.		
			3.1.10		
NO ₂ (filtered, not emitted)	54.663	t/a	Stoichiometric calculations		
			3.1.10		
Input mass	527.4	t/a			

Output mass	564.7	t/a	
Difference	6.6%	Of input mass	

References

- E. Kipf, R. Zengerle, J. Gescher and S. Kerzenmacher, ChemElectroChem, 2014, 1 (11), 1849– 1853.
- M. Kokko, F. Bayerköhler, J. Erben, R. Zengerle, P. Kurz and S. Kerzenmacher, *Appl. Energy*, 2017, 190, 1221–1233.
- 3. B. Teichgräber and M. Hetschel, Korrespondenz Abwasser, Abfall, 2016, 63 (2), 97-102.
- J. Gescher, Karlsruhe Institute of Technology KIT, Growth yield/ rate of anaerobic microorganisms, Personal communication, Freiburg, Germany, 2016.
- H. Hiegemann, D. Herzer, E. Nettmann, M. Lubken, P. Schulte, K.-G. Schmelz, S. Gredigk-Hoffmann and M. Wichern, *Bioresour.Technol.*, 2016, 218, 115–122.
- A. Roskosch and S. Otto, Technical Guide on the Treatment and Recycling Techniques for Sludge from municipal Wastewater Treatment with references to Best Available Techniques (BAT), 2014, https://www.umweltbundesamt.de/publikationen/technical-guide-on-thetreatment-recycling-0 (last accessed April 2017).
- P. Cornel in Neue maschinen- und verfahrenstechnische Möglichkeiten zur Einsparung von Betriebskosten bei der Abwasserbehandlung: Mit Ausstellung ; [am 2. November 2006 in Darmstadt], New technological possibilities for savings of operation costs in wastewater treatment, Inst. WAR, Darmstadt, 2006.
- M. Mergelmeyer, G. Kolisch, U. Menninger, H. Steinmetz, C. Locher, J. Helmich, J. Brüggemann, Y. Taudien and T. Osthoff, Verbesserung der Klärgasnutzung, Steigerung der Energieausbeute auf kommunalen Kläranlagen., Improvement of sewer gas utilization, increase of energy yield in municipal wastewater treatment, 2014, https://www.lanuv.nrw.de/uploads/tx_mmkresearchprojects/2014_Abschlussbericht_TP2.p df (last accessed July 2017).
- German Association for Water, Wastewater and Waste DWA, Merkblatt ATV-DVWK-M 368, Biologische Stabilisierung von Klärschlamm, Biological stabilisation of sewage sludge, 2003.
- 10. M. Hacker, Wastewater Treatment Association Staufener Bucht, *Staff requirements for operation of the BioMethanol system*, Personal communication, 2016.
- S. Freguia, K. Rabaey, Z. Yuan and J. Keller, *Environ. Sci. Technol.*, 2007, **41** (8), 2915–2921.
 M. Rombach, plating electronic GmBH, *Offer for rectifier & transformer for parallel supply of*
- electrolysis cells of BioMethanol system, Personal communication, 2016.
- C. Röhr, GUT GmbH, Costs for activated carbon filters for biogas plants., Email, 2017.
 J. M. Foley, R. A. Rozendal, C. K. Hertle, P. A. Lant and K. Rabaey, Environ. Sci. Technol., 2010,
- M. Poley, N.A. Rozental, C. K. Hertle, P. A. Lancald K. Rabaey, *Environ. Sci. Technol.*, 2010, 44 (9), 3629–3637.
- M. Bertau, H. Offermanns, L. Plass, F. Schmidt and H.-J. Wernicke, Methanol: The Basic Chemical and Energy Feedstock of the Future, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
- Esska.de GmbH, Electric Pump Binda Nautic 0.22 Up To 5.5 kW, n.d., https://www.esskatech.co.uk/esska_eng_s/Electric_Pump_Binda_Nautic_0_22_Up_To_5_5_kW_25925000000 0_7080.html (last accessed April 2017).
- 17. Fuel Cell Store, Nafion HP Membrane properties, n.d., http://www.fuelcellstore.com/fuelcell- components/membranes/nafion/nafion-hp (last accessed April 2017).
- Kern GmbH, Polysulfon (PSU), n.d., http://www.kern.de/de/technischesdatenblatt/polysulfon-psu?n=2401_1 (last accessed April 2017).
- Eurostat, ECU/EUR currency exchange against national currency, http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=de&pcode=tec000 33&plugin=1 (last accessed June 2017).
- M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U. Onken and A. Renken, *Technische Chemie, Technical Chemistry*, Wiley-VCH, Weinheim, Bergstr, 2013.
- R. Henkel, Eisenhuth GmbH & Co. KG, Costs for production of membrane electrode assembly for bio-electrochemical systems, Personal communication, 2016.
- M. Sievers, O. Schläfer, H. Bormann, M. Niedermeiser, D. Bahnemann and R. Dillert, Machbarkeitsstudie für die Anwendung einer mikrobiellen Brennstoffzelle im Abwasser- und Abfallbereich, Feasibility study of the application of microbial fuel cells in waste- and wastewater treatment, 2010, https://www.dbu.de/OPAC/ab/DBU-Abschlussbericht-AZ-26580.pdf (last accessed May 2017).
- 23. S. Kerzenmacher, *Potential scenarios for the performance of microbial electrolysis cells,* Personal conversation.
- 24. Thomas-Eisenhandel GmbH (materials trading), http://www.thomas-eisen.de/edelstahl.php (last accessed 16.08.17).
- 25. Westmetall GmbH & Co. KG, Market Data, http://www.westmetall.com/en/markdaten.php?action=show_diagram&field=LME_Cu_stoc k (last accessed 16.08.17).
- A. Escapa, X. Gómez, B. Tartakovsky and A. Morán, Int. J. Hydrogen Energy, 2012, 37 (24), 18641–18653.
- 27. L & W Kompressoren, Offer for compressors for BioMethanol system, Personal communication, 2015.
- Udo Kleusberg GmbH, Offer for pressure reactor for BioMethanol system, Personal communication, 2015.
- 29. M. Taal, I. Bulatov, J. Klemes and P. Stehlik, Appl. Therm. Eng., 2003, 23 (14), 1819–1835.
- R. Smith, Chemical process design: For the efficient use of resources and reduced environmental impact, Chapter 2, Wiley, Chichester, 2003.

- Thermo Fisher (Kandel) GmbH, 45776 Copper based methanol synthesis catalyst, alfa.com/de/catalog/045776/ (last accessed April 2017).
- M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti and E. Tzimas, Appl. Energy, 2016, 161, 718–732.
- 33. Mr. Stäbler, Linde Gas AG, Price of carbon dioxide, Personal communication, 2015.
- N. von der Assen, P. Voll, M. Peters and A. Bardow, Chem. Soc. Rev., 2014, 43 (23), 7982– 7994.
- A. Tremel, P. Wasserscheid, M. Baldauf and T. Hammer, Int. J. Hydrogen Energy, 2015, 40 (35), 11457–11464.
- H.-M. Henning and A. Palzer, Was kostet die Energiewende?, Costs of the energy transition, 2015, https://www.fraunhofer.de/content/dam/zv/de/Forschungsfelder/Energie-Rohstoffe/Fraunhofer.ISE_Transformation-Energiesystem-
 - Deutschland_final_19_11%20(1).pdf (last accessed April 2017).
- Gebrüder Förster GmbH Schwanau, Costs for excess sludge transport, Personal communication.
- J. Herb, Wastewater Treatment Association Breisgauer Bucht, Costs for disposal of excess sludge, Personal communication, 2017.
- City of Freiburg, Germany, Stadtentwässerungssatzung, Statute for municipal drainage, https://www.freiburg.de/pb/site/Freiburg/get/documents_E1775422983/freiburg/daten/or tsrecht/15%20Entwaesserung/OrtsR_15_02.pdf (last accessed 21.04.017).
- Methanex Corporation, Methanex Monthly Average Regional Posted Contract Price History, https://www.methanex.com/our-business/pricing (last accessed 06.02.17).
- F. Schlowin, J. Liebertrau and W. Edelmann in *Energie aus Biomasse: Grundlagen, Techniken* und Verfahren, Renewable Energy from Biomass, ed. M. Kaltschmitt, Springer, Dordrecht, Heidelberg, London, New York, NY, 2009, 2nd edn.
- J. Stubenvoll, S. Böhmer and I. Szednyj, Stand der Technik bei Abfallverbrennungsanlagen, State of the Art in Waste Incineration, 2002, http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/industrie/pdfs/endversion _deutsch.pdf (last accessed April 2017).
- 43. Ministry of Environment, Climate Protection and the Energy Sector, Baden Württemberg, Germany, Leitfaden Energieeffizienz auf Kläranalgen, Guide Energy Efficiency in Wastewater Treatment, 2015, https://um.baden-wuerttemberg.de/de/service/publikation/did/leitfadenenergieeffizienz-auf-

kiaeranlagen/?tx_rsmbwpublications_pi3%58topics%5D=59&tx_rsmbwpublications_pi3%58 ministries%5D=4&cHash=07a19559c580f51a950940fbe5342ed5 (last accessed April 2017).

44. VA TECH WABAG GmbH, Nachhaltige Klärschlammbehandlung: Vom Abfallprodukt zur alternativen Energiequelle, Sustainable Treatment of Activated Sludge: From Waste to Energy Source, http://www.wabag.com/wpcontent/uploads/2012/04/SludgeDigestion_2012_v32_WEB.pdf (last accessed July 2017).