Organic solvent- and catalyst-free Baeyer Villiger oxidation of levoglucosenone and dihydrolevoglucosenone (Cyrene®): a sustainable route to (S)-γ-hydroxymethyl-α,β-butenolide and (S)-γ-hydroxymethyl-γ-butyrolactone

G. Bonneau,^a A. A. M. Peru,^a A. L. Flourat^a and F. Allais*^a

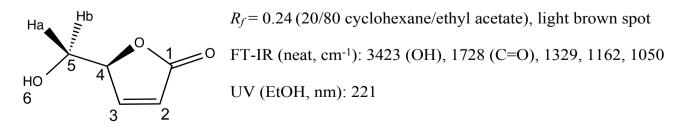
^a AgroParisTech, Chaire Agro-Biotechnologies Industrielles (ABI), CEBB, 3 rue des Rouges Terres F-51110 Pomacle, France.

Prof. Florent Allais, <u>florent.allais@agroparistech.fr</u>

Electronic Supplementary Information (ESI)

Table of content

General organic solvent- and catalyst-free Baeyer Villiger oxidation procedure for HBO	S2			
Optimized kilo-scale organic solvent- and catalyst-free Baeyer Villiger oxidation procedure				
for HBO	S 3			
Analytical data for HBO	S 3			
HPLC method for HBO production monitoring	S4			
Palladium-catalyzed hydrogenation of LGO into 2H-LGO	S4			
Palladium-catalyzed hydrogenation of HBO into 2H-HBO	S5			
Optimized kilo-scale organic solvent- and catalyst-free Baeyer Villiger oxidation procedure				
for 2H-HBO	S6			
Analytical data for 2H-HBO	S6			
¹ H NMR spectrum of industrial grade levoglucosenone (LGO)	S8			
¹³ C NMR spectrum of industrial grade levoglucosenone (LGO)	S9			
FT-IR spectrum of (<i>S</i>)-γ-hydroxymethyl-α,β-butenolide (HBO)	S10			
¹ H NMR spectrum of (<i>S</i>)-γ-hydroxymethyl-α,β-butenolide (HBO)	S11			
¹³ C NMR spectrum of (<i>S</i>)-γ-hydroxymethyl-α,β-butenolide (HBO)	S12			
FT-IR spectrum of 2,3-dehydro levoglucosenone (2H-LGO)	S13			
¹ H NMR spectrum of 2,3-dehydro levoglucosenone (2H-LGO)	S14			
¹³ C NMR spectrum of 2,3-dehydro levoglucosenone (2H-LGO)	S15			
FT-IR spectrum of (<i>S</i>)-γ-hydroxymethyl-γ-butyrolactone (2H-HBO)	S16			
¹ H NMR spectrum of (<i>S</i>)-γ-hydroxymethyl-γ-butyrolactone (2H-HBO)	S17			
¹³ C NMR spectrum of (<i>S</i>)-γ-hydroxymethyl-γ-butyrolactone (2H-HBO)	S18			


General organic solvent- and catalyst-free Baeyer Villiger oxidation procedure for HBO

An 30% aq. H_2O_2 solution (9.78 M, 0.81 L, 7.92 mol, 1 eq./LGO) was added dropwise over 3.5 hours under nitrogen to LGO (1 kg, 7.93 mol) cooled down with an ice bath. After completion of the addition, the reaction was warmed to 50 °C and stirred for an extra 20 hours. Presence of H_2O_2 was evaluated with peroxide strips and, if any, the residual H_2O_2 was quenched using the methods described in the manuscript. The reaction mixture was then concentrated in vacuo and the residue was distilled of (150 °C/0.7-0.9 mbar) to provide **HBO** as a clear oil that readily cristallyzes (71% yield).

Optimized kilo-scale organic solvent- and catalyst-free Baeyer Villiger oxidation procedure for HBO

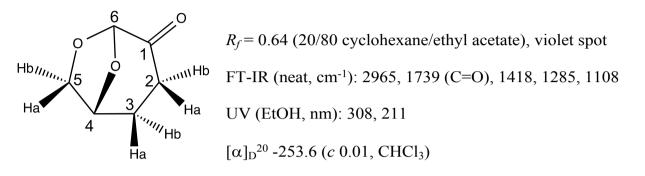
An 30% aq. H_2O_2 solution (9.78 M, 0.81 L, 7.93 mol, 1 eq./LGO) was added dropwise over 4 hours under nitrogen to a solution of LGO (1 kg, 7.93 mol) in water (1 L) cooled down with an ice bath. After completion of the addition, the reaction was warmed to 50 °C and stirred for an extra 6 hours. Presence of H_2O_2 was evaluated with peroxide strips and, if any, the residual H_2O_2 was quenched using the methods described in the manuscript. The reaction mixture was then concentrated in vacuo and the residue was distilled of (150 °C/0.7-0.9 mbar) to provide HBO as a clear oil that readily cristallyzes (71% yield).

Analytical data for HBO

[α]_D²⁰ -112.0 (*c* 0.01, CHCl₃). [(Lit. -114.5 (*c* 0.1, CHCl₃)]

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ 3.25 (s, 1H, H₆), 3.79 (dd, 1H, *J* = 12 and 3.6 Hz, H_{5a}), 3.99 (d, 1H, *J* = 12 Hz, H_{5b}), 5.17 (m, 1H, H₄), 6.20 (dd, 1H, *J* = 5.7 and 1.8 Hz, H₂), 7.53 (dd, 1H, *J* = 5.7 and 1.5 Hz, H₃). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ 62.2 (t, C₁), 84.3 (d, C₄), 122.8 (d, C₂), 154.0 (d, C₃), 173.5 (s, C₁)

HRMS: *m*/*z* [M+H]+ calcd for C₅H₆O₃: 115.0395, found: 115.0396


HPLC method for HBO production monitoring

HPLC analyses were performed on a Thermofisher Ultimate 3000 equipped with a DAD detector (220 nm) and a Thermoscientific Syncronis aQ (250 x 4.6 mm, 5 μ m) column. Samples were prepared by diluting 10 μ L of reaction mixture in 1.5 mL of acetonitrile. Following conditions were applied: injection 10 μ L, oven temperature 30 °C, flow 0.8 mL/min, elution method (water/acetonitrile): 0-5 min isocratic 85/15, 5-10 min from 85/15 to 90/10, 10-15 min isocratic 90/10, 15-20 min 90/10 to 85/15. Retention times: t_r (LGO) = 7.91 min, t_r (HBO) = 3.66 min, t_r (FBO) = 6.23 min.

Palladium-catalyzed hydrogenation of LGO into 2H-LGO

10% Pd/C (10% w/w, 500 mg) was added to a solution of (-)-Levoglucosenone LGO (5 g, 39.7 mmol) in ethyl acetate (50 mL, C = 0.8 M) at rt. The stirred suspension was degassed 3 times and put under nitrogen. The suspension was then hydrogenated under hydrogen atmosphere at rt until TLC showed complete consumption of starting material. The crude mixture was filtered over a pad of Celite® and the filtrate was

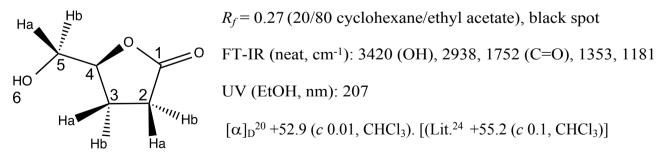
concentrated to dryness with silica gel. The crude product was purified by silica gel chromatography (elution with 10 to 60% ethyl acetate in cyclohexane) to yield pure **2H-LGO** (colorless oil, 4.4 g, 87%)

¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ 2.02 (m, 1H, H_{3b}), 2.34 (m, 2H, H_{2b,3a}), 2.62 (m, 1H, H_{2a}), 4.00 (m, 2H, H_{5a,4}), 4.70 (m, 1H, H_{5b}), 5.10 (s, 1H, H₆).

¹³C NMR (CDCl₃, 75 MHz): δ_C 29.9 (t, C₃), 31.1 (t, C₂), 67.5 (t, C₅), 73.1 (d, C₄), 101.5 (d, C₆), 200.3 (s, C₁).

HRMS: *m*/*z* [M+H]+ calcd for C₆H₉O₃: 129.0552, found: 129.0553

Palladium-catalyzed hydrogenation of HBO into 2H-HBO

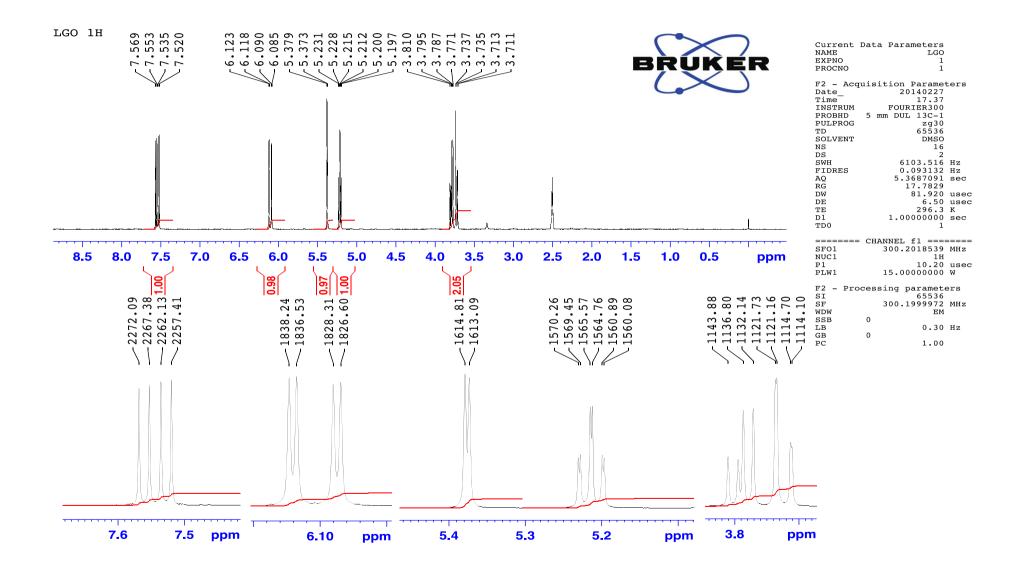

10% Pd/C (10% w/w, 250 mg) was added to a solution of **HBO** (1.4 g, 12.3 mmol) in ethyl acetate (15 mL, C = 0.8 M) at rt. The stirred suspension was degassed 3 times and put under nitrogen. The suspension was then hydrogenated under hydrogen atmosphere at rt until TLC showed complete consumption of starting material. The crude mixture was filtered over a pad of Celite® and the filtrate was concentrated to

dryness with silica gel. The crude product was purified by silica gel chromatography (elution with 100% ethyl acetate) to yield pure **2H-HBO** (1.26 g, 87%).

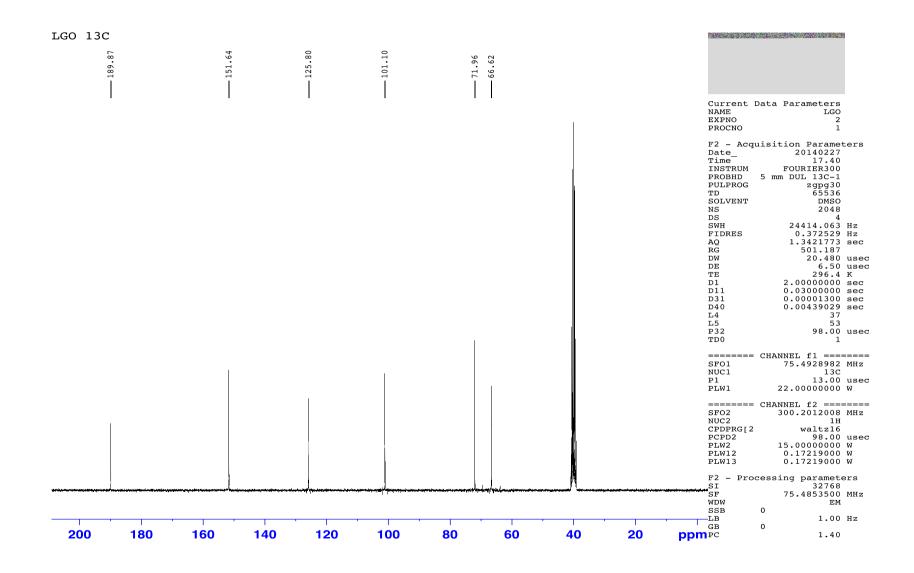
Optimized kilo-scale organic solvent- and catalyst-free Baeyer Villiger oxidation procedure for 2H-HBO

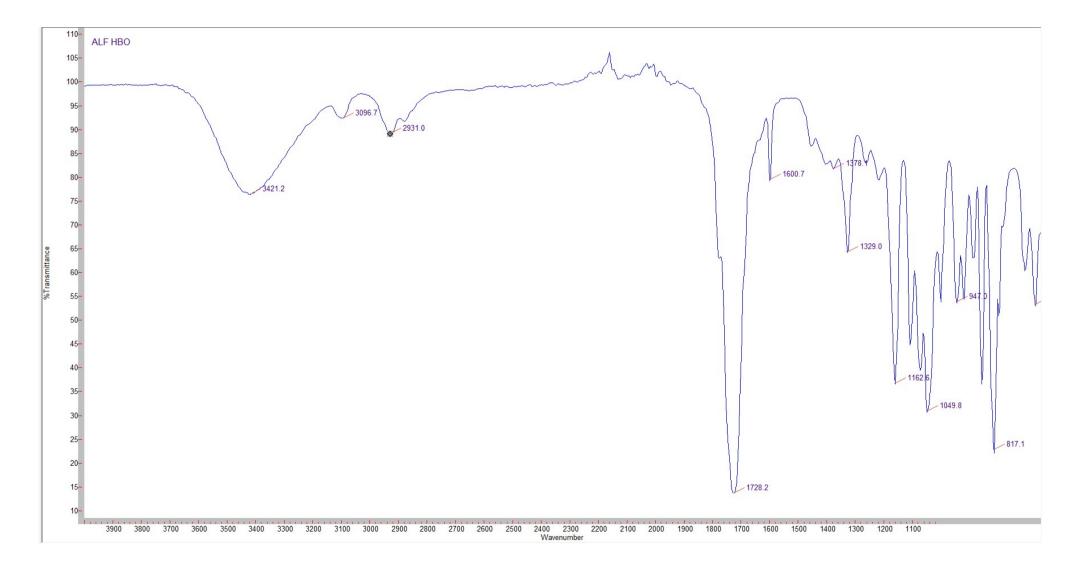
An 30% aq. H_2O_2 solution (9.78 M, 0.81 L, 7.92 mol, 1 eq./**2H-LGO**) was added dropwise over 4 hours under nitrogen to a solution of **2H-LGO** (844 g, 7.93 mol) in water (1L) cooled down with an ice bath. After completion of the addition, the reaction was warmed to 50 °C and stirred for an extra 6 hours. Presence of H_2O_2 was evaluated with peroxide strips and, if any, the residual H_2O_2 was quenched using the methods described in the manuscript. The reaction mixture was then concentrated in vacuo and the residue was distilled of (150 °C/0.7-0.9 mbar) to provide **2H-HBO** as a clear oil that readily cristallyzes (72% yield).

Analytical data for 2H-HBO

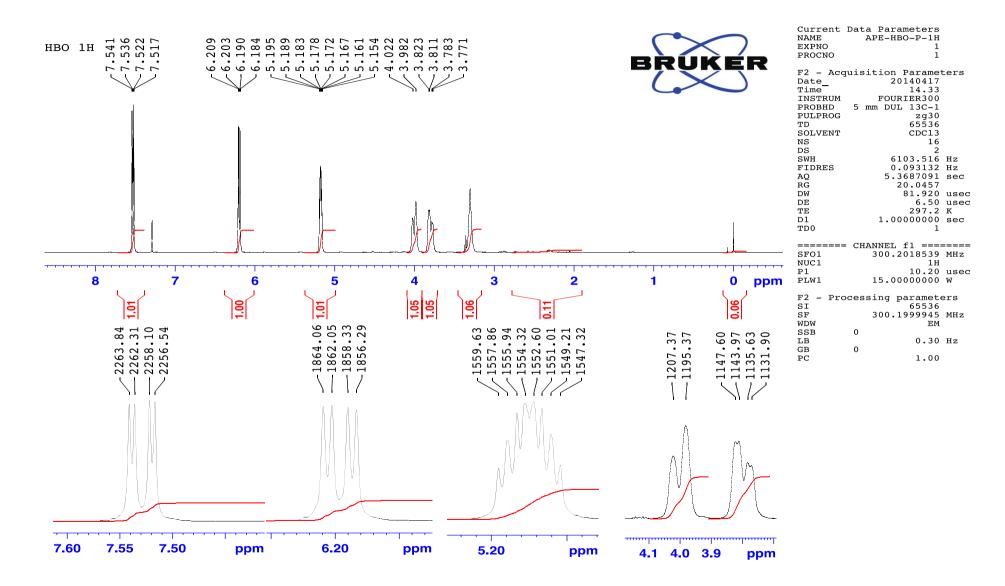


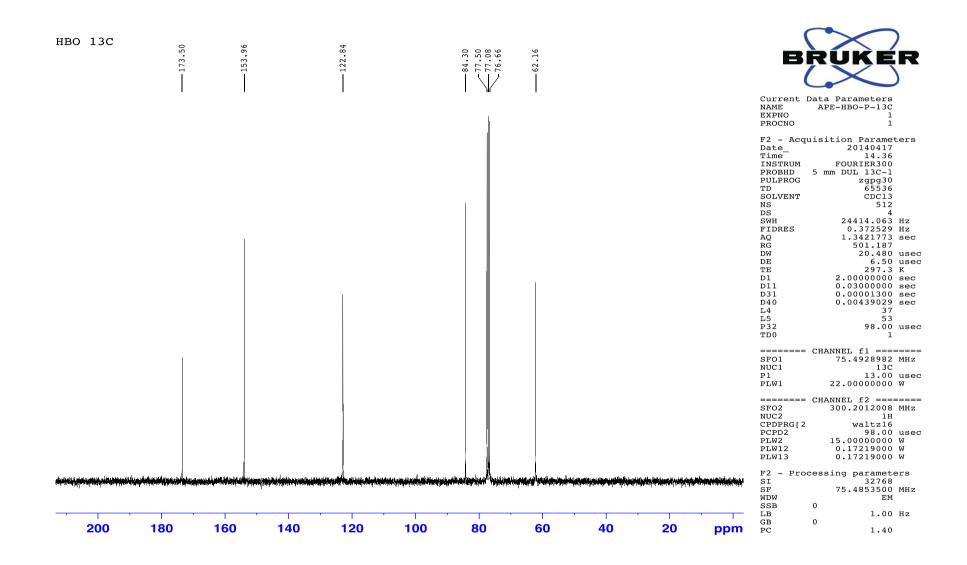
¹H NMR (CDCl₃, 300 MHz): $\delta_{\rm H}$ 2.20 (m, 2H, H₃), 2.61 (m, 3H, H_{2,6}), 3.66 (dd, 1H, J = 12.6 and 4.5 Hz, H_{5a}), 3.92 (dd, 1H, J = 12.6 and 2.7 Hz, H_{5b}), 4.64 (m, 1H, H₄)


 ^{13}C NMR (CDCl₃, 75 MHz): δ_C 23.1 (t, C₂), 28.7 (t, C₃), 64.1 (t, C₅), 80.8 (d, C₄), 177.7 (s, C₁)


HRMS: *m/z* [M+Na]+ calcd for C₅H₈NaO₃: 139.0371, found: 139.0379

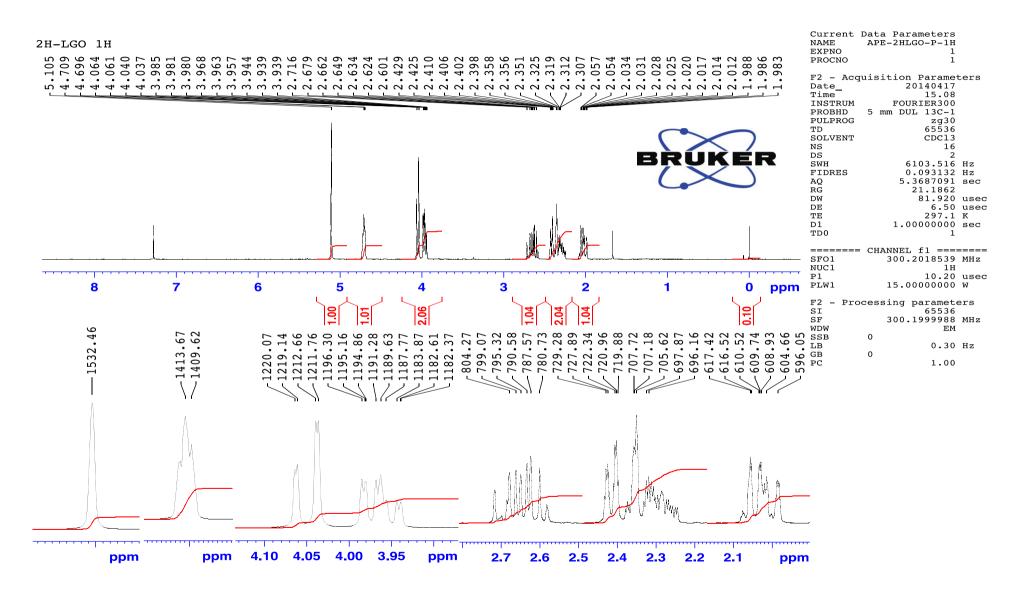
¹H NMR spectrum of industrial grade levoglucosenone (LGO)

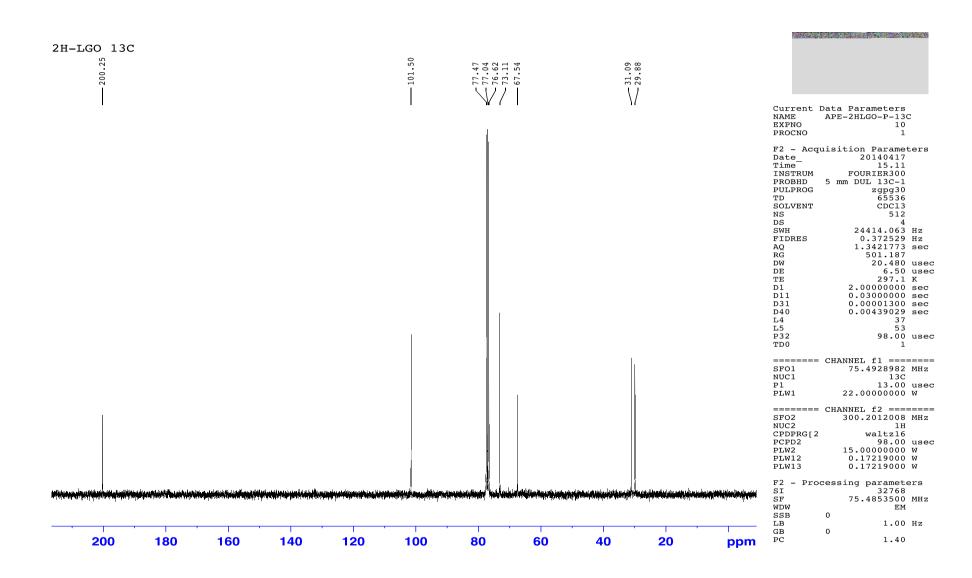

¹³C NMR spectrum of industrial grade levoglucosenone (LGO)



FT-IR spectrum of (S)- γ -hydroxymethyl- α , β -butenolide (HBO)

¹H NMR spectrum of (S)- γ -hydroxymethyl- α , β -butenolide (HBO)

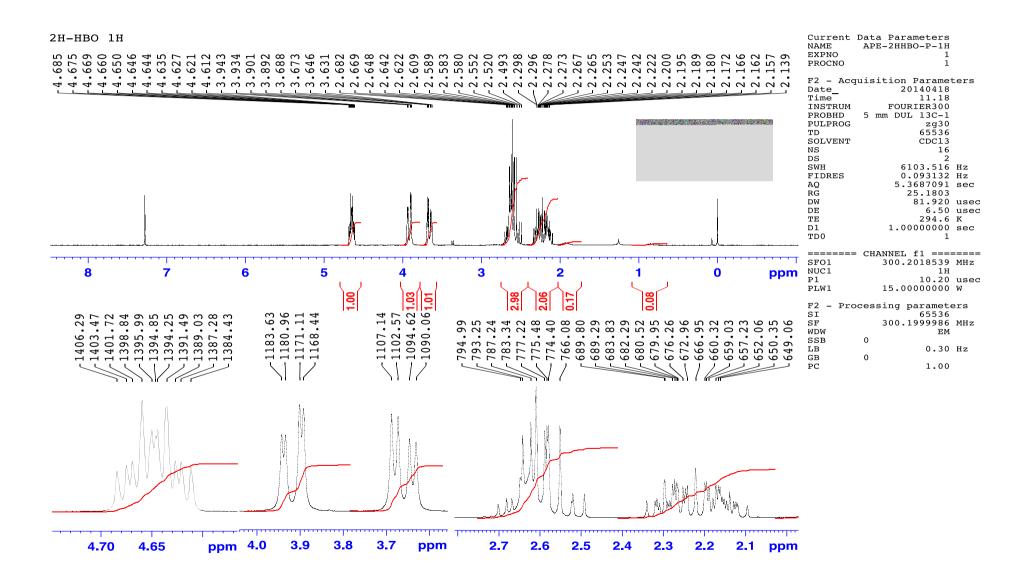

¹³C NMR spectrum of (S)- γ -hydroxymethyl- α , β -butenolide (HBO)


The second second

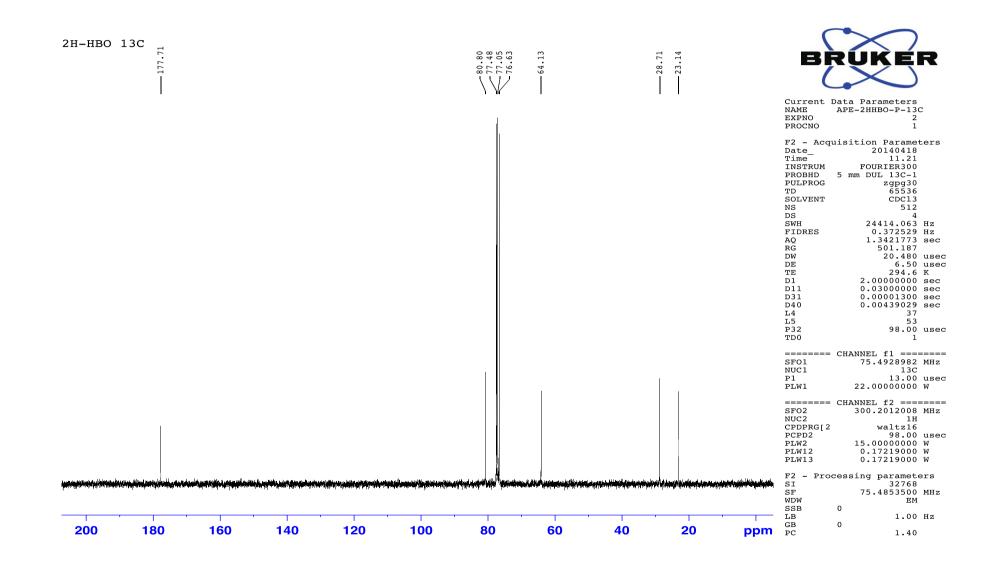
FT-IR spectrum of 2,3-dehydro levoglucosenone (2H-LGO)

¹H NMR spectrum of 2,3-dehydro levoglucosenone (2H-LGO)

¹³C NMR spectrum of 2,3-dehydro levoglucosenone (2H-LGO)



FT-IR spectrum of (*S*)-γ-hydroxymethyl-γ-butyrolactone (2H-HBO)


The second second

S	1	6

¹H NMR spectrum of (S)- γ -hydroxymethyl- γ -butyrolactone (2H-HBO)

¹³C NMR spectrum of (S)- γ -hydroxymethyl- γ -butyrolactone (2H-HBO)

