
S-1

Supporting Information

Real-time reaction control for solar production of chemicals
under fluctuating irradiance
Fang Zhao, Dario Cambié, Volker Hessel, Michael G. Debije and Timothy Noël*

E-mail: T.Noel@tue.nl

Electronic Supplementary Material (ESI) for Green Chemistry.
This journal is © The Royal Society of Chemistry 2018

mailto:T.Noel@tue.nl

S-2

Table of Contents

1. Global Horizontal Radiation data ...3

2. Materials and Method ..4

2.1 Reaction Control System ...4

2.2 Phototransistor datasheet ..5

2.3 Light fluctuation experiment ...6

2.4 Outdoor experiment ...7

3. Conversion allowance..8

4. Kinetic investigations ...9

5. Cost evaluation ..10

6. Arduino source code..11

6.1 Relationship between number of voltage readings and the measurement error11

6.2 Reaction Control System code ..11

6.3 LED driver code for the variable irradiation experiment ...13

S-3

1. Global Horizontal Radiation data
The irradiance data provided by SEAC (Solar Energy Application Centre) included the minute

average of the global horizontal irradiance (GHI), the corresponding direct normal irradiance (DNI)

and the ambient temperature as a csv file (an excerpt of their dataset is shown below). To transform

the DNI into the direct component of the GHI for Figure 1 in the manuscript, the sun azimuth data

with minute resolution was calculated for the measurement day (22/09/2017) with the

longitude/latitude position of the measurement site (Eindhoven, the Netherlands) using SunPosition

(http://www.susdesign.com/sunposition) (details in Figure S2). The DNI value of each minute was

then multiplied by the cosine of the azimuth, in radians.

Date Time GHI avg DNI avg T avg
Azimuth (deg,

calculated)
Direct

component
Direct

percent

22/09/2017 10:00:00 465.415 424.254 15 -45.03 299.836 64.4%
22/09/2017 10:01:00 477.965 415.677 15.1 -44.77 295.106 61.7%
22/09/2017 10:02:00 446.273 323.78 15.2 -44.51 230.897 51.7%
22/09/2017 10:03:00 430.339 268.129 15.2 -44.25 192.061 44.6%
22/09/2017 10:04:00 410.002 215.535 15.3 -43.99 155.069 37.8%
22/09/2017 10:05:00 442.642 276.964 15.4 -43.73 200.136 45.2%
22/09/2017 10:06:00 376.529 148.131 15.4 -43.47 107.504 28.6%
22/09/2017 10:07:00 310.757 39.98 15.4 -43.21 29.139 9.4%
22/09/2017 10:08:00 309.491 58.877 15.4 -42.95 43.095 13.9%
22/09/2017 10:09:00 298.334 57.302 15.4 -42.68 42.126 14.1%
22/09/2017 10:10:00 272.423 24.258 15.4 -42.42 17.908 6.6%
22/09/2017 10:11:00 265.746 19.164 15.4 -42.15 14.208 5.3%
22/09/2017 10:12:00 260.526 12.727 15.4 -41.89 9.474 3.6%
22/09/2017 10:13:00 270.364 25.572 15.4 -41.62 19.117 7.1%
22/09/2017 10:14:00 283.587 41.599 15.4 -41.36 31.223 11.0%
22/09/2017 10:15:00 297.845 65.754 15.3 -41.09 49.557 16.6%

Figure S1 Calculation of the direct component of GHI based on calculated azimuth.

SunPosition output complete
Latitude is 51.26 degrees north
Longitude is -5.29 degrees east
Time zone offset from GMT is 1 hours
Zero azimuth is south
Output angle units are degrees

Figure S2 Settings used in SunPosition for the calculation of the azimuth values.

S-4

2. Materials and Method
2.1 Reaction Control System
All the parts used are standard electronics components and were bought from tinytronics.nl except

the phototransistor, obtained from www.rs-online.com. The reaction control system is composed of

a phototransistor (TEPT4400, see specifications below), a microcontroller (Arduino UNO)

connected to a 12V power supply, a serial to TTL module based on the max232 design (SP3232)

and a 10 k resistor connected using a breadboard and jump wires in the circuit represented below

in Figure S3. Furthermore, to match the RX/TX pins in the serial module to the corresponding

counterpart on the syringe pump (Chemyx Fusion 200) port, a crossover RS-232 adaptor was

needed (Conrad.nl cat. No 569532–89). No crossover adaptor was needed to connect the reaction

control system to a computer via serial connection using a parallel cable. The phototransistor was

placed against the reactor edge and kept in position by a 3D-printed holder placed around the LSC-

PM.

Figure S3 Picture and schematics of the reaction control system.

For convenience and safety, in the experiments the electronical components were all enclosed in

3D-printed box (see Figure S4) featuring an LCD display where the current value of the voltage

S-5

drop in the light sensing circuit and the corresponding flow rate were displayed. To take full

advantage of the microcontroller capabilities, the box was designed to host two serial connections

and 6 phototransistors (Q1-Q6). For the electrical circuit a small breadboard was attached on a

ProtoShield connected to the Arduino microcontroller. The overall circuit schematics is presented

in Figure S5.

Figure S4 Photographs of the 3D-printed enclosure for the reaction control system. A) Outside view, 100ml
volumetric flask for size comparison. B) Inside view with box opened, showing the internal components.

Figure S5 Electrical scheme of the circuit for the reaction control system.

S-6

2.2 Phototransistor datasheet
Below are reported the phototransistor specifications as obtained from the manufacturer datasheet.

Figure S6 Relationship between photo current and
illuminance (log-log plot, adapted from
manufacturer datasheet).

Figure S7 Relative spectral sensitivity of the
phototransistor (adapted from manufacturer
datasheet). The luminophore emission is centered at
about 620nm, therefore matching with the optimal
sensitivity range of the detector.

2.3 Light fluctuation experiment
To test the reaction control system with a reproducible light intensity profile, a second

microcontroller was connected to the LED strip hosted in the cylindrical box previously described

to adjust the light intensity according to a fixed and predefined pattern (see the source code at the

end of the SI for details). In particular, a transistor (an IRLB8721 MOSFET) was adopted to change

the LED intensity via pulse width modulation as showed in Figure S10.

Figure S10 Scheme of the circuit for the LED driver.

S-7

2.4 Outdoor experiment
For reaction tests using the natural sunlight on the building roof, two reactors (two dye-doped LSC-

PMs with and without reaction control, or a dye-doped LSC-PM with reaction control and a non-

doped reactor without reaction control) were tested at the same time, as shown in Figure S11. A

four-way valve was used so that the conversion in both reactors could be monitored by switching

the valve periodically.

Figure S11 Schematic representation of the

setup for the outdoor experiment. A)

Comparison between LSC-PM with reaction

control and without, B) comparison of the LSC-

PM with reaction control and a non-doped

reactor, C to E) picture of the setup.

3. Conversion allowance
To reduce the frequency of flow rate commands

sent to the pump, the feasibility of employing a

conversion allowance was investigated. By

prescribing a conversion allowance σ, the

control program, after a new voltage value is
Figure S8 Reaction test for investigation on the effect
of conversion allowance σ on control performance. A)
The variation in light source intensity along with time.
B) The flow rate changes along with time for different
values of conversion allowance: 0, 0.5%, 1%, 2.5%
and 5%. C) The conversion changes along with time in
response to the light intensity variation shown in a for
different values of conversion allowance: 0, 0.5%, 1%,
2.5% and 5%.

S-8

read, will first estimate the conversion at the current flow rate. If this estimated conversion is still in

the range of (XT – σ, XT + σ, where XT represents the target conversion), the control program will

not send any command to the pump and continue the next loop directly.

A number of σ values were investigated: 0, 0.5 %, 1 %, 2.5 % and 5 %, respectively. In the tests,

the light source intensity was decreased step by step from 0.84 to 0.77 W, from 0.56 to 0.49 W and

from 0.21 to 0.14 W respectively, as shown by Figure S8 a, with a small step of approximately

0.007 W. The pump flow rate was also monitored for different values of σ and displayed in Figure

S8b. It can be seen that the pump flow rate was changed less frequently as the value of σ

increased.

S-9

4. Kinetic investigations
A schematic figure for the experimental set-up is given in Figure S9. DPA and an oxygen saturated

MB solutions (0.2 mM and 0.4 mM in acetonitrile, respectively) were fed by a syringe pump

(Chemyx Fusion 200) with the same flow rate. The two solutions were first mixed in a micro T-mixer

(1/16″, IDEX Health & Science, Part No P-632) and then entered the LSC-PM which was placed in

a 3D-printed cylindrical box (see Figure S9). A White LED strip (4.8W, Paulmann, Cat No 703.18)

was wrapped onto the interior wall of the cylindrical box and a power supply (Delta Elektronika,

power supply E030-3) was employed to power the LED strip. Pressurized air was blown into the

cylindrical box to keep the temperature constant at 25 °C inside the box. The reaction mixture was

analyzed with an in-line UV/Vis spectrometer (Avantes, AvaSpec 2048) by monitoring the DPA

peak at 372 nm, whose absorbance was then used to calculate the reaction conversion. The

syringes, the T-mixer and the connecting tubes were wrapped with aluminum foil to avoid exposure

to the light outside the cylindrical box. In the experiments, the output of the power supply was varied

to give different light intensity of the LED strip. The flow rate was changed to obtain the kinetic

curves under each light intensity. The corresponding voltage value under each light intensity

detected by the microcontroller was also recorded.

Figure S9 Flow scheme of the setup used for the kinetic investigations. The variable voltage power supply is used
to study the reaction kinetics at different light intensity.

S-10

4.1 Kinetic investigation result
The experimental data used to generate the light intensity/conversion/residence time surfaces are

the following.

The raw data were then interpolated (with Python’s spline-fitting function bisplrep) to match the

voltages associated with the Arduino light-levels.

Residence
time/s Conversion

0.606 V
20 5.7%
40 10.9%
80 20.4%

160 35.6%
240 45.8%

0.747 V
5 7.7%
7 10.6%

11 16.0%
20 25.6%
30 34.6%
45 48.1%
65 60.9%
85 70.6%

105 77.5%
150 86.6%
250 93.7%

0.854 V
6 15.0%

11 24.8%
20 39.9%
25 46.9%
35 58.6%
45 67.4%
65 78.8%
90 85.7%

130 93.8%
1.001 V
5 18.9%
6 22.7%

10 35.4%
15 47.7%
20 57.0%
30 70.8%
40 80.1%
55 88.7%
85 95.4%
1.201 V
5 29.1%
7 38.9%

10 51.4%
14 63.4%
18 71.3%
24 80.8%
34 89.4%
50 95.9%
1.406 V
4 34.3%
5 40.9%
7 51.9%

10 65.3%
14 76.8%
19 85.1%
30 94.0%
1.712 V
10 78.1%
13 85.5%

16 90.5%
20 94.3%
25 97.4%
30 98.8%
1.937 V
9 82.7%

10 85.6%
12 89.8%
15 93.9%
20 97.4%
25 98.9%
2.161 V
7 81.1%
8 84.7%

10 89.6%
13 93.9%
16 96.1%
20 97.6%
2.343 V
6 80.7%
8 88.1%

10 92.7%
12 94.8%
16 96.9%
2.536 V
5 77.6%
6 83.6%
8 90.4%

11 94.7%
14 96.5%

S-11

5. Cost evaluation
One notable advantage of our reaction control system is its simple and inexpensive nature. The

total price of the components of a reaction control system with one phototransistor and one pump

can be calculated as follows:

Table S1 Cost of components for the reaction control system.
Component Price

Microcontroller Arduino/Genuino UNO € 23.00
Phototransistor rs-online.com TEPT4400 € 0.36
Resistor 10 k € 0.05
Serial port/UART module SP3232 with mounting screws € 5.00
Serial crossover adaptor Conrad.nl 569532-89 € 12.80
Serial cable 2 male ends € 4.79
ProtoShield Including breadboard € 5.00
Jump wires Pack of 65, various colors € 3.00

TOTAL: € 54.00

Remarkably, this total price can be further reduced by about one third by using a generic Arduino

clone (≈3€) instead of a genuine one, whose characteristics are identical due to the open hardware

nature of the project.

S-12

6. Arduino source code
6.1 Relationship between number of voltage readings and the measurement error
By increasing the number of individual calls to the analogRead() function, the error associated with

that measurement decreases with the square root of the number of readings per cycle. In Figure

S12 the decrease in the CV% of 600 individual measuring cycle in constant irradiation condition is

plotted as function of the number of readings averaged per cycle.

Figure S12 Decrease in the coefficient of variation as function of the number of readings averaged.

6.2 Reaction Control System code
/*
 The circuit:
 * LCD RS pin to digital pin 12
 * LCD Enable pin to digital pin 11
 * LCD D4 pin to digital pin 5
 * LCD D5 pin to digital pin 4
 * LCD D6 pin to digital pin 3
 * LCD D7 pin to digital pin 2
 * Serial1 RX pin to digital pin 10
 * Serial1 TX pin to digital pin 9
 * Phototransistor1 to analog pin 0
 */
// Time library
#include <Time.h>

// LCD
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// SERIAL PORTS
#include <SoftwareSerial.h>
SoftwareSerial mySerial1(10, 9); // RX, TX
//SoftwareSerial mySerial2(7, 6); // RX, TX

// Number of iterations (8k is about 1 sec)
int iterations = 4096;
// Phototransistor pin
int analogPin = 0;

// Internal variables
unsigned long sum = 0;
String str_flow_rate = "1.0";
float voltage;
float flow_rate;
// Data from kinetics (below for 50% target
conversion)

S-13

// The data represent the pump flowrate associated
with each 10mV light level in the 0.75-2.53V
interval
float flow_rate_for_voltage[] =
{0.074448329,0.078966952,0.083587801,0.088361292,0.0
93279578,0.098319923,0.103451781,0.108652066,0.11388
3977,0.119132067,0.124380724,0.129650143,0.134964741
,0.14034518,0.145814034,0.151393125,0.15708681,0.162
893859,0.168849678,0.17497382,0.18124301,0.18761583,
0.194174148,0.200797969,0.207542606,0.214416571,0.22
131854,0.228369437,0.235428995,0.242569983,0.2498322
93,0.256965141,0.264337086,0.271560051,0.278790304,0
.286225544,0.29348551,0.300683874,0.308052344,0.3155
79959,0.32266174,0.329881656,0.337254976,0.344799131
,0.352010852,0.359189673,0.366529708,0.374047449,0.3
81756571,0.389291345,0.396666174,0.404189021,0.41186
6799,0.419705589,0.427710669,0.435722731,0.443481493
,0.451380361,0.459419714,0.467596682,0.475910333,0.4
84354701,0.492922623,0.501221764,0.509421507,0.51764
8098,0.525881386,0.534101898,0.542305879,0.55049122,
0.558656968,0.566801884,0.574927492,0.582503529,0.58
9717691,0.596888949,0.604025338,0.611135351,0.618224
245,0.625304381,0.63238512,0.63947591,0.646589334,0.
653740525,0.660941178,0.668208092,0.675556691,0.6830
05761,0.69057308,0.697663471,0.704463103,0.711383594
,0.718440512,0.725657517,0.733055852,0.740656421,0.7
48488132,0.75657091,0.764916534,0.773522167,0.782386
998,0.79151048,0.800889384,0.810523341,0.820407228,0
.830541711,0.84091992,0.851538404,0.862390523,0.8724
95193,0.882013187,0.891605412,0.901254428,0.91094489
3,0.920662176,0.930391529,0.940119689,0.94983278,0.9
59518448,0.96916366,0.978762988,0.988326181,0.997859
264,1.007374926,1.016876693,1.026381071,1.035889014,
1.04541559,1.054964952,1.06455344,1.074184388,1.0838
67871,1.093615781,1.103437743,1.11334515,1.123341832
,1.133441862,1.143659532,1.15399551,1.162703762,1.17
1051525,1.179451426,1.187913291,1.196428929,1.205002
219,1.213621962,1.22228578,1.230987665,1.239724372,1
.24848799,1.257274737,1.266074639,1.274889853,1.2837
0465,1.292518376,1.301324063,1.310112459,1.318876901
,1.327610978,1.336305985,1.344954965,1.353545446,1.3
62066602,1.370503972,1.378847493,1.387080711,1.39519
1658,1.403165214,1.410987557,1.41864454,1.426121127,
1.433402579,1.440479296,1.447325973,1.453936256,1.46
0286154,1.466369277,1.472164502,1.477656202};

void setup() {
 // Serial monitor
 Serial.begin(9600);
 Serial.println("Starting Arduino...");

 pinMode(10, INPUT);
 mySerial1.begin(38400);

 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 lcd.print("Starting controller");
}

float sum_to_voltage(unsigned long sum) {
 // Convert the raw data value (0 - 1023) to
voltage (0.0V - 5.0V):
 return sum/iterations * (5.0 / 1023.0);
}

float Flow_rate_for_voltage(float voltage) {
 int light_level;
 voltage = voltage * 100;
 light_level = (int) voltage;

 // Boundary conditions: edge between 0.75 and 2.53
V
 if (light_level < 75) {
 light_level=75;
 }
 if (light_level > 253) {
 light_level = 253;
 }

 // convert voltage into array indexes (one value
every 10 millivolts, starting from 0.75V)
 return flow_rate_for_voltage[light_level-75];
}

void loop() {
 // Read the voltage for $iterations time
 for (int i = 0; i < iterations; i++) {
 // read the raw data coming in on analog pin 0:
 sum += analogRead(analogPin);
 }
 // Convert sum of light levels to voltage
 voltage = sum_to_voltage(sum);
 // Get flow rate corresponding to that voltage
value
 str_flow_rate =
String(Flow_rate_for_voltage(voltage), 5);
 // Set sum back to 0
 sum = 0;

 // SET PUMP
 mySerial1.listen();
 // The code below is compatible with Chemyx Fusion
200
 // Verify the command needed for each pump, and
the corresponding connection settings.
 mySerial1.println("set rate " + str_flow_rate);

 // Printing current voltage to LCD
 lcd.setCursor(0, 1);
 lcd.print("Voltage: "+String(voltage, 5));

 // Print data to serial (time, voltage, flowrate)
for logging purposes
 Serial.println(String(millis()) + ", " +
String(voltage, 3) + ", " + str_flow_rate);

 // Wait until pump has set the flow rate and
answered to the previous command. This prevents
occasional pump freeze
 mySerial1.read();
}

S-14

6.3 LED driver code for the variable irradiation experiment
// Time library
#include <Time.h>
// PWM on pin 3
#define WHITEPIN 3

// Seconds in milliseconds, i.e. 1000 (use shorter
to accelerate testing)
#define THOUSAND 1000
// Minute in milliseconds, i.e. 60000 (use shorter
to accelerate testing)
#define MINUTE 60000

float seconds;
unsigned long timedelay_ms;

void setup() {
 // Serial monitor
 Serial.begin(9600);
 Serial.println("Starting Arduino...");
 pinMode(WHITEPIN, OUTPUT);
}

bool Linear_decrease(unsigned int from, unsigned int
to, unsigned int total_time) {
 float time_delay = (float) total_time/(from-to);
 time_delay = time_delay * THOUSAND;
 for (int i = from; i >= to; i--) {
 analogWrite(WHITEPIN, i);
 delay(time_delay);
 }
}

bool Linear_increase(unsigned int from, unsigned int
to, unsigned int total_time) {
 float time_delay = (float) total_time/(to-from);
 time_delay = time_delay * THOUSAND;
 for (int i = from; i <= to; i++) {
 analogWrite(WHITEPIN, i);
 delay(time_delay);
 }
}

bool Squared_decrease_to_fless(unsigned int from,
unsigned int to, unsigned int total_time) {
 float coefficient = (total_time)/sqrt(from-to);
 float previous = (unsigned long) total_time *
THOUSAND;
 for (int i = (from-to); i >= 0; i--) {
 float current = sqrt(i) * coefficient *
THOUSAND;
 analogWrite(WHITEPIN, i+to);
// Serial.println(i+to);
 delay(previous-current);
 previous = current;
 }
}

bool Squared_increase_from_fless(unsigned int from,
unsigned int to, unsigned int total_time) {
 float coefficient = (total_time)/sqrt(to-from);
 float previous = 0;
 analogWrite(WHITEPIN, from);
 for (int i = 1; i <= (to-from); i++) {
 float current = sqrt(i) * coefficient *
THOUSAND;
 analogWrite(WHITEPIN, i+from);
// Serial.println(i+from);
 delay(current-previous);
 previous = current;
 }
}

bool Squared_increase_to_fless(unsigned int from,
unsigned int to, unsigned int total_time) {
 float coefficient = (total_time)/sqrt(to-from);
 float previous = (unsigned long) total_time *
THOUSAND;

 for (int i = (to-from); i >= 0; i--) {
 float current = sqrt(i) * coefficient *
THOUSAND;
 analogWrite(WHITEPIN, to-i);
// Serial.println(to-i);
 delay(previous-current);
 previous = current;
 }
}

bool Squared_decrease_from_fless(unsigned int from,
unsigned int to, unsigned int total_time) {
 float coefficient = (total_time)/sqrt(from-to);
 float previous = 0;
 analogWrite(WHITEPIN, from);
 for (int i = 1; i <= (from-to); i++) {
 float current = sqrt(i) * coefficient *
THOUSAND;
 analogWrite(WHITEPIN, from-i);
// Serial.println(from-i);
 delay(current-previous);
 previous = current;
 }
}

void loop() {
seconds = millis()/1000;

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] -- START
-- Holding at mid");
 analogWrite(WHITEPIN, 158);
 // 1 minute
 timedelay_ms = (unsigned long) 3 * MINUTE;
 delay(timedelay_ms);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Holding at low");
 analogWrite(WHITEPIN, 61);
 // 10 minutes
 timedelay_ms = (unsigned long) 8 * MINUTE;
 delay(timedelay_ms);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Holding at high");
 analogWrite(WHITEPIN, 255);
 // 2 minutes
 timedelay_ms = (unsigned long) 2 * MINUTE;
 delay(timedelay_ms);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Holding at mid");
 analogWrite(WHITEPIN, 158);
 // 3 minutes
 timedelay_ms = (unsigned long) 3 * MINUTE;
 delay(timedelay_ms);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Linear decrease to low");
 Linear_decrease(158, 61, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Linear increase to high");
 Linear_increase(61, 255, 300);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Linear decrease to mid");
 Linear_decrease(255, 158, 150);

S-15

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Holding at mid");
 analogWrite(WHITEPIN, 158);
 // 3 minutes
 timedelay_ms = (unsigned long) 3 * MINUTE;
 delay(timedelay_ms);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Squared decrease to low");
 Squared_decrease_to_fless(158, 61, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Squared increase to mid");
 Squared_increase_from_fless(61, 158, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Squared increase to high");
 Squared_increase_to_fless(158, 255, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Squared decrease to mid");
 Squared_decrease_from_fless(255, 158, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Holding at mid");
 analogWrite(WHITEPIN, 158);
 // 3 minutes
 timedelay_ms = (unsigned long) 3 * MINUTE;
 delay(timedelay_ms);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Squared decrease to low");
 Squared_decrease_from_fless(158, 61, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Squared increase to mid");
 Squared_increase_to_fless(61, 158, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Squared increase to hi");
 Squared_increase_from_fless(158, 255, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Squared decrease to mid");
 Squared_decrease_to_fless(255, 158, 150);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Holding at mid");
 analogWrite(WHITEPIN, 158);
 // 3 minutes
 timedelay_ms = (unsigned long) 3 * MINUTE;
 delay(timedelay_ms);

 seconds = millis()/1000;
 Serial.println("[" + String(seconds) + "] --
Swithcing off (2h)");
 analogWrite(WHITEPIN, 0);
 // 3 minutes
 timedelay_ms = 120 * MINUTE;
 delay(timedelay_ms);
}

