Electronic Supplementary Information

Fully Solution-Processable Cu₂O-BiVO₄ Photoelectrochemical Cells for Bias-Free Solar Water Splitting

Hyunwoo Kim, [†] Sanghyun Bae, [†] Dasom Jeon, and Jungki Ryu^{*}

Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

[†]These authors contributed equally to this work.

*To whom correspondence should be addressed: jryu@unist.ac.kr

Fig. S1 Cyclic voltammograms showing the HER and OER catalytic activity of NiPOM and CoPOM, respectively.

Fig. S2 LSV curves showing the effect of the number of HER BLs on the performance and stability of the Cu₂O photocathode. LSV curves were measured under periodic and continuous illumination.

Fig. S3 *Ex situ* XPS spectra of the bare Cu₂O and the Cu₂O with 10 BL of the HER CMs before and after the PEC hydrogen evolution test at an applied bias of 0.35V vs. RHE for 1h. (Black dotted line for Cu₂O, Blue dotted line for Cu₂O-Ni10BL)

Fig. S4 Performance of Cu₂O photocathodes modified with Pt nanoparticles (Cu₂O-Pt). (a) Chronoamperograms of various Cu₂O photocathodes—the bare Cu₂O, Cu₂O with Pt nanoparticles, and Cu₂O with the HER CMs—are shown for comparison. (b, c) SEM images of the Cu₂O-Pt photocathode before and after the PEC test at an applied bias of 0.35 V vs. RHE for 1h.

R (Ω)	Rs	R_{I}	R_2
Cu ₂ O	30.26	79.5	992.3
Cu ₂ O-15BL	32.73	38.25	589.3

Table S1. The fitting results for the EIS spectra (Fig. 4a) of the Cu_2O photocathode with and without 15 BL of the HER CMs.

Fig. S5 (a) Comparison between the charge separation efficiency for the bare Cu_2O and the Cu_2O with 15 BL of the HER CMs. (b) Chronoamperograms measured for the calculation of the charge separation efficiency. 0.1 M sodium persulfate (Na₂S₂O₈) was used as an electron scavenger.

Fig. S6 TEM, STEM and elemental mapping analyses of BiVO₄ photoanodes before and after the modification with 10 BLs of the OER CMs.

Fig. S7 Formation of the OER CMs was investigated with (a) UV-vis absorption spectroscopy, (b) QCM analysis, (c) ellipsometry, and (d) XPS.

Fig. S8 LSV curves showing the effect of (a) the number of OER BL and (b) illuminationdirection on the performance of the BiVO₄ photoanode.

	$R_{S}(\Omega)$	$R_{I}(\Omega)$	CPE1 (F)	R_2 (Ω)	<i>CPE2</i> (F)
BiVO4	26.51	360.3	7.66 x 10 ⁻⁵	2.00 x 10 ⁵	7.95 x 10 ⁻⁵
BiVO ₄ -5BL	31.95	173.3	4.58 x 10 ⁻⁵	988.4	1.75 x 10 ⁻⁴
BiVO4-10BL	21.58	123.2	4.00 x 10 ⁻⁵	727.6	4.39 x 10 ⁻⁴
BiVO4-15BL	24.42	134.2	6.90 x 10 ⁻⁵	832.4	3.25 x 10 ⁻⁴

Table S2. The fitting results for the EIS spectra (Fig. 5e) of the BiVO₄ photoanode with and without OER CMs.

Figure S9. (a) Comparison between the charge separation efficiency for the bare $BiVO_4$ and the $BiVO_4$ with 10 BL of the OER CMs. (b, c) Chronoamperograms measured for the calculation of the charge separation efficiency. 0.5 M sodium sulfite (Na₂SO₃) was used as a hole scavenger.