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Chemicals

ZnCl,'xH,0, Zn(NOs),'6H,0, AICl;-6H,0, FeCl;-6H,0, CrCl;-6H,0O, Cr(NO3)-9H,O
ZrOCl,-8H,0, HBr (reagent grade 47%), p-toluenesulfonic acid monohydrate (pTSA),
tetrabutylphosphonium bromide (Bu4PBr), mesitylene, indole, 4-methoxy-a-methylbenzyl
alcohol, benzoin (a-hydroxy-a-phenylacetophenone), (3,4-dimethoxy)benzyl alcohol, N,N-
dimethylformamide (DMF), triethylamine (TEA), benzene-1,4-dicarboxylic acid (BDC), Al-
BTC and Fe-BTC were used as received from Sigma-Aldrich without further purification. The
H-Y Faujasite zeolites CBV400, 600, 720, 760, 901 were purchased from Zeolyst international.
Tetraoctylphosphonium bromide, Tetrabutylphosphonium chloride and
Tributyltetradecylphosphonium chloride were purchased from iolitec.
Tributylmethylphosphonium bis(trifluoromethanesulfonyl)imide was purchased from TCI.
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Figure S1 N, physisorption isotherm of the HY CBV720 commercial zeolite heterogeneous
catalyst, performed at 77 K on a Micromeritics TriStar instrument. Before measurement, the sample
was dried overnight at 573 K.



Synthesis of non-commercially available catalysts

HBr@BuPBr: The synthesis of HBr@Bu,PBr was adapted from the method reported.!
Briefly, 10 pl HBr (48%) were added to 1 g of solid BusPBr. The partially melted
HBr@Bu,PBr white solid was stirred at room temperature for 0.5 h and used as reaction media
and catalyst. The same recipe was extended to other ionic liquids (see Table S2). The samples
of ZnCl,@Bu4PBr, FeCl;@BusPBr, CrCl;@BusPBr, AIClI;@BusPBr and ZrCly@Bu,PBr
were prepared using the corresponding metal chlorides (1 wt.% respect to the amount of ionic
liquid) instead of HBr and keeping the rest of the method the same.

The (Zn)BDC, (Cr)BDC and (Zr)UiO-66 metal-organic frameworks were prepared following
reported methods,>* in order to establish comparisons with the rest of the transition metal
containing catalysts.

MOF-5: Zn(BDC) or MOF-5 was synthetized by adding 16 mmol of triethylamine to a DMF
(40 ml) solution of benzene-1,4-dicarboxylic acid (2 mmol) and zinc nitrate hexahydrate (4
mmol). The addition takes place during 0.5-2 h under stirring conditions at room temperature.
A white precipitate was formed, isolated by centrifugation, washed with DMF and
dichloromethane and dried in an oven at 90 °C.2

MIL-101: Cr(BDC) or MIL-101 was prepared from a water (15 ml) solution of benzene-1,4-
dicarboxylic acid (500 mg), Cr(NOs3);-9H,0 (800 mg) and 40uL. HF (40%), heated at 200 °C
during 8 h in an oven. The blue-green solid was washed with hot DMF, water, ethanol and
dried at 80 °C overnight.?

Ui0-66: Zr(BDC) or UiO-66 was obtained from a DMF solution (90 ml) of ZrCl, (750 mg)
and benzene-1,4-dicarboxylic acid (740 mg), heated at 80 °C for 12 h and at 100 °C for 24 h.
The white powder obtained was recovered by filtration, washed with DMF and CH,Cl,, and
dried under vacuum.*
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Figure S2. XRD patterns of (a) Zn(BDC), (b) Cr(BDC) and (c) Zr(BDC) metal-organic
frameworks. XRD patterns were recorded using a Panalytical Empyrean X-ray diffractometer
with Cu Ko radiation (A\=1.54778 A). The samples were prepared by filling the holder with the
dry powder.



Reaction conditions

The reactions were performed as follows: 1 mmol (117 mg) of indole, 1.2 mmol of alcohol
(182 mg for 4-methoxy-a-methylbenzyl alcohol, 254 mg for benzoin, 168 mg for (3.,4-
dimethoxy)benzyl alcohol) and n-tetradecane (198 mg, 1 mmol) as the internal standard for
the analysis with gas chromatography (GC) coupled with a flame ion detector (FID), were
added to a glass vessel containing 500 mg of MX,@Bu4PBr (containing 1 %wt. of MX,, = HBr,
ZnCl,, FeCls, AICI;, CrCls, ZrCly) in the case of ionic liquids or 40 mg of porous solid. The
vials were closed and transferred into an aluminum heating block preheated to 50 °C or 70 °C
in order to obtain compounds 1, 3 (50 °C) or 4 (70 °C). The mixture was stirred (400 rpm) at
this temperature and sample aliquots were taken at different reaction times. In the case of the
MX,@Bu4PBr ionic liquid (solid at room temperature), its viscosity decreases upon heating
above room temperature, obtaining a homogeneous reaction mixture (see Figure S6a). The
reaction products were recovered by extraction with mesitylene (1,3,5-trimethylbenzene) and
analyzed by GC/MS using a GC Shimadzu 2014 GC instrument equipped with a FID detector
and a CP-Sil 5 CB column. Mass Spectra were obtained with a GC/MS Agilent 6890 gas
chromatograph, equipped with a HP-SMS column, coupled to a 5973 MSD mass spectrometer
with electron impact ionization. The ionic liquid was resused after washing (50 °C, 5 min, 400
rpm) three times with mesitylene, separated by centrifugation and dried in a stream of nitrogen
at room temperature. For the porous solids, the solvent-free suspension was stirred (300 rpm)
at the desired temperature and sample aliquots were taken from the supernatant upon
centrifugation (3000 rpm, 10 min) at different reaction times. The supernatant solution was
analyzed with GC-FID. The solid was separated by centrifugation, washed with mesitylene,
ethanol and subsequently dried in a stream of nitrogen at room temperature for a subsequent
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Figure S3. Batch reaction between indole and alcohols using ionic liquid or microporous solid
to obtain indole derivatives. To have an idea of the costs, the price values of the compounds
were obtained from sigma-aldrich and zeolyst international.
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Catalytic results for the synthesis of functionalized indoles
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Figure S4. Conversion vs. time for the solvent-free alkylation of indole (1 mmol) with 4-
methoxy-a-methylbenzyl alcohol (1.2 mmol) at 50 °C using homogeneous (a), quasi-
homogeneous (b) and heterogeneous (c) catalysts.

Table S1. Indole (1 mmol) alkylation with 4-methoxy-a-methylbenzyl alcohol (1.1 mmol) at
50 °C under solvent-free conditions, using different acid catalysts.

Zn2+ A13+ Fe3+ Cr3+ Zr4+ H+
Homogeneous ‘
ro (mmol*h1)? 53 7.3 6.1 6.8 7.7 9,7
TOF (hh)® 257 350 330 363 580 315
Quasi-homogeneous ‘
1o (mmol*h) 0.1 1.0 0.6 0.9 1.8 4.3
TOF (h'!) 4 51 35 50 137 141
Heterogeneous ‘
1o (mmol*h) 0.1 2.0 1.2 1.0 2.4 4.8
TOF (h'!) 1 13 8 6 15 114

2 Initial reaction rate (ry) expressed as moles of indole converted (for conversion lower than 50%) divided by time
(in hours). ® Turnover frequency (TOF) expressed as mol of indole converted per mol of active site and time in
hours; in other words, initial reaction rate (ry) divided by mol of active site (Zn?*, Fe3*, Cr3*, AI’*, Zr*, H).
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Figure SS. Reuses for the alkylation of indole (1 mmol) with 4-methoxy-a-methylbenzyl
alcohol (1.2 mmol) at 50 °C using HBr@Bu4PBr ionic liquid (a) or HY CBV720 zeolite (b).
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Figure S6. Quasi-homogeneous HBr@Bu,PBr (a), (c) and heterogeneous HY zeolite (b), (d)
before (up) and after (down) the extraction of the products (1 and 2) with mesitylene.
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Figure S7. TOF (mols of products obtained per grams of acid catalyst and per hour) calculated
at initial reaction times, when using different catalytic systems: (i) metal cations or HBr as acid
catalysts (homogeneous), (ii) in the BusPBr ionic liquid (quasi-homogeneous) or (iii) in the
structure of microporous MOFs and HY zeolite (heterogeneous).
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Figure S8. Conversion vs. time (a, ¢) and selectivity vs. time (b, d) for the alkylation of indole
(1 mmol) with 4-methoxy-a-methylbenzyl alcohol (1.2 mmol) at 50 °C using different HY
zeolite catalysts with different Si/Al= 2.5 (CBV600), 15 (CBV720), 30 (CBV760) and 40
(CBV901) (parts a, b) and HBr in the ionic BuyPBr liquid (1, 5 and 10 wt%) (parts c and d).
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Table S2. Conversion of indole and selectivity to 1 in different HBr @ Ionic liquids (1%wt.
HBr).2

Tonic liquid Reaction rate (mmol-h!) | Selectivity to 1 (%)P

%

P~

Q Br 4.4 79
HBr@Bu,PBr

V\/\/\é\/\/‘/\/

i{r 4.4 89

HBr@Oct,PBr

%

P~

i cl 3.8 85
HBr@Bu,PCI
e 1.8 90
HBI"@BM3(C14)CZ

\/\;P\/\g

Q\S’N_\IS:_CF:’ 5.8 79
FiC'Y O
HBI"@BM3M€P(CF3SOZ)2N
a Reaction conditions: indole (1 mmol), 4-methoxy-a-methylbenzyl alcohol (1.2 mmol) at 50

°C. b For 70-80% indole conversion.
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Scheme S1. Proposed clustered structures of anionic dimers in HBr@Bu,PBr (a) or
HBr@Bu;MeP(CF350,),N (b) ionic liquids, which favors the proton conduction.
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Figure S10. Conversion vs. time (a) and selectivity to 1 vs. conversion (b) for the alkylation
of indole (1 mmol) with 4-methoxy-a-methylbenzyl alcohol (1.2 mmol) at 50 °C using 500 mg
of HBr containing ionic liquids (3 mol% H" respect to the indole) with different anions: Br, Cl
or (CF5;S0,),N; or hydrocarbon chain length: Butyl (Bu), Octyl (Oct) or tetradecyl (Cy4).
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Figure S11. Conversion vs. time profile of the alkylation of 1 mmol of indole with 1.2 mmol
of 4-methoxy-a-methylbenzyl alcohol at 50 °C (a), a-hydroxy-a-phenylacetophenone at 50 °C
(b) or (3,4-dimethoxy)benzyl alcohol at 70 °C (c) using 500 mg of the HBr@Bu4PBr ionic
liquid (3 mol% H* respect to the indole) or 40 mg of HY zeolite (4 mol% H* respect to the

indole) in 1ml of acetonitrile (CH3CN) or solvent-free (neat).
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Figure S12. Reuses for the alkylation of indole (1 mmol) with (a) a-hydroxy-o-

phenylacetophenone (1.2 mmol) at 50 °C and (b) (3,4-dimethoxy)benzyl alcohol at 70 °C using
the HBr@Bu4PBr ionic liquid (3 mol% H™ respect to the indole).
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Figure S13. Conversion vs. time for the alkylation of indole (1 mmol) with an increasing

amount of 4-methoxy-a-methylbenzyl alcohol (1 mmol, 2 mmol, 3 mmol) using HBr@Bu,PBr
ionic liquid (a) or HY zeolite (b).
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Alcohol uptake in the ionic liquid or zeolite

Table S3. a-hydroxy-a-phenylacetophenone (benzoin or simply abbreviated as “OH”) uptake
from a mesitylene solution (10 mg OH /ml) into the HBr@Bu,PBr or HY CBV720 zeolite,
determined by GC-FID after 15 min at 50 °C and using C,4 as internal standard:

(benzoin: C14), - (benzoin: C14) ...
(benzoin: C14), .

% benzoin uptake =

GC Areas in the mesitylene solution HBr@Bu,PBr HY zeolite
(Aon/Ac14)=0 0.92 0.68
(Aon/Ac14)=15min 0.71 0.63
% benzoin uptake = Alon/Ac1a) 23% 7%

(AOH/ACM-)t =0

N
o

- N
=l

—

Benzoin uptake / wt.%

HBr@Bu,PBr  H-Y zeolite

Figure S14. (a) Benzoin uptake (wt.%) from mesitylene to the reusable quasi-homogeneous
(magenta color) and heterogeneous (burgundy color) catalyst and reaction media.
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Spectral data of indole derivative products
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Figure S16. m/z calculated for C{;H;;NO*™ [M*] =251
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Figure S17. 'H NMR (300 MHz, CDCl3) § 7.90 (br s, 1H, NH), 7.32 (dt, J = 11.3 Hz, 2H, A7),
7.23-7.15 (m, 3H, Ar), 7.02-6.94 (m, 2H, A7), 6.82-6.78 (m, 2H), 4.32 (q, J= 7.1 Hz, 1H, -CH-
CH;), 3.76 (s, 3H, -OCH;), 1.67 (d, J= 7.1 Hz, 3H, -CH;).
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Figure $20: 'H NMR (400 MHz, CDCl;) § 8.10 (br s, 1H, NH), 8.05 (d, ] = 7.4 Hz, 2H, 4r),
7.50 (d,J = 7.5 Hz, 2H), 7.40 (dd, J =13.1 Hz, 4.7 Hz, 3H) 7.34 - 7.32 (m, 2H, Ar), 7.29 (d, J
= 7.7 Hz, 2H, A4r), 7.25 (d, J = 2.3 Hz, 1H, 4r), 7.20 (d, ] = 7.8 Hz, 1H, 4r), 7.10 (d, T = 7.3
Hz, 1H, 4r), 7.01 (d, J = 1.1 Hz, 1H, 4r), 6.28 (s, 1H, C-CH-C).
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Figure S21. m/z calculated for C;H;;NO,"* [M*]: 267
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Figure S22. 'H NMR (300 MHz, CDCl3) § 7.99 (br s, 1H, NH), 7.56 (dd, J= 7.9 Hz, 0.5 Hz
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CH,-C), 3.88 (s, 3H, -OCH;), 3.84 (s, 3H, -OCH;).
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Spectral data of intermediates and by-products
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The almost instantaneous reaction of benzyl bromide with indole respect to the slower reaction
of indole with benzyl alcohol to form de mono and di-benzylic indole (see Scheme S2 and Fig.
S28-S29) suggest the formation (by nucleophilic substitution) of the reactive bromide
intermediate 8 in the HBr@Bu,PBr media (see Fig. S15).

@H‘\H &\9@ &—,

>90% yield
(70°C, 2h)

Scheme S2. Reaction of benzyl bromide electrophile intermediate with the indole nucleophile
results in the formation of mono- and di- alkylated indole A and B products.
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Figure S28. m/z calculated for C{sH;sN™ [M*] =207
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