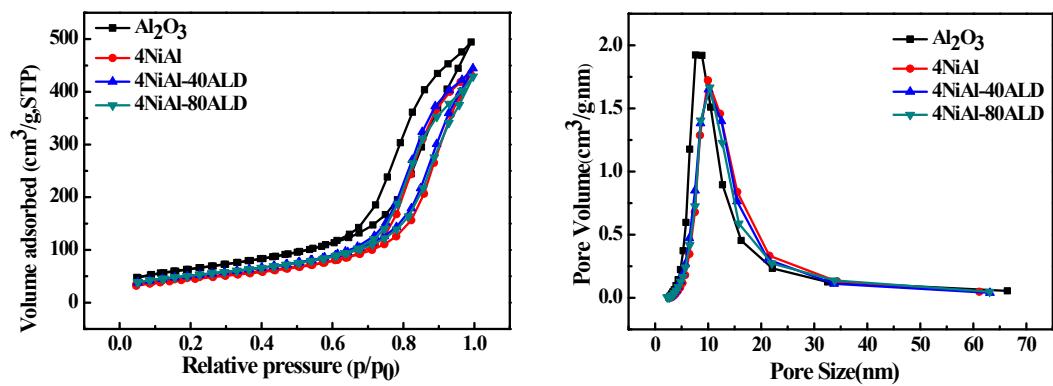
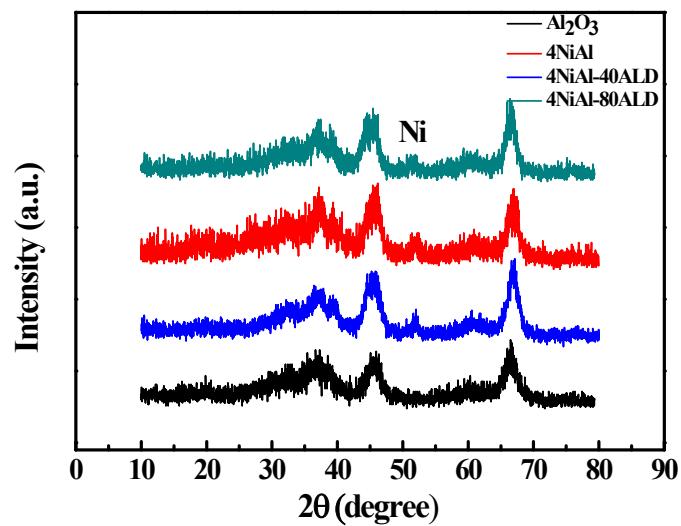


Supporting Information


CO₂ conversion to synthesis gas *via* DRM on the durable Al₂O₃/Ni/Al₂O₃ sandwich catalyst with high activity and stability

Yu Zhao, Yunqing Kang, Hui Li*, and Hexing Li*


Education Ministry Key Lab and Int. Joint Lab of Res. Chem., Shanghai University of Electric Power, Shanghai 200062, China.

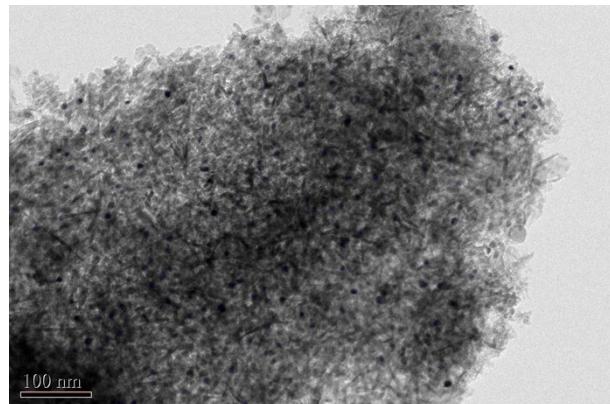
*Corresponding authors. Tel: +86 21 64322272; Fax: +86 21 64322272.

E-mail address: hexing-li@shnu.edu.cn (H. X. Li)

Figure S1. (Left) N₂ adsorption-desorption isotherms of different catalysts and (Right) pore size distribution calculated from the adsorption branch of BET isotherms.

Figure S2. XRD patterns of different catalysts.

Table S1. CO₂ and CH₄ conversions on Ni/Al₂O₃ catalysts with different Ni loadings^[a]


Catalysts	1NiAl	2NiAl	4NiAl	6NiAl
Conversion/CH ₄ (%)	91.9	92.9	95.7	30.1
Conversion/CO ₂ (%)	92.6	93.6	95.6	32.8

[a] Reaction conditions: reaction temperature = 800°C, volume ratio of CH₄ : CO₂ : N₂ = 1 : 1 : 1, GHSV = 300 L·g_{Ni}⁻¹·h⁻¹

Table S2. CO₂ and CH₄ conversions on 4NiAl catalysts achieved after calcinations at different temperatures^[a]

Catalysts	4NiAl-700	4NiAl-800	4NiAl-900
Conversion/CH ₄ (%)	94.6	95.7	91.3
Conversion/CO ₂ (%)	94.3	95.6	91.5

[a] Reaction conditions are given in Table S1.

Figure S3. Detail of particle size distribution for 4NiAl catalyst after H₂ reduction.