Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Reply to the 'Comment on "Zemplén transesterification: a name reaction that has misled us for 90 years" by G. Poli, C. Pezzetta, I. Leito and S. Tshepelevitsh, Green Chemistry, 2018, 20, DOI: 10.1039/c7gc03795c

Bo Ren^b, Jiantao Ge^a, and Hai Dong^{a,*}

^a School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, 430074, Wuhan, P.R. China, hdong@mail.hust.edu.cn

^b College of Chemistry and Chemical Engineering, Xinyang Normal University, Nanhu Road 237, Xinyang, Henan 464000, P. R. China. **General Methods:** All commercially available starting materials and solvents were of reagent grade and used without further purification. 1H NMR spectra were recorded at 298K in CD3OD by a 600 M NMR instrument (JNM-ECZ600R/S3) using the residual signals from CD3OD (1H: δ = 3.31 ppm) as internal standard.

General Method for Measuring the Rate Constant (k): As step b) in Figure **S1** is the rate-determining step, the rate constants (k) can be measured using the following equation: $\ln (B_0/B) = k^*A^*t$, where A stands for the concentration of base catalysts, B stands for the concentration of esters, k stands for the rate constant, and t is the reaction time. The values of B₀/B can be measured over time using ¹H NMR tests. In Figure **S1**, A stands for the concentration of the H-bonding complex and X stands for MeO or OH group. As methanol acts as solvent in the reaction, A equals to the concentration of hydroxyl anion or methoxyl anion and is a constant. Therefore, we can get the differential equation (1) which is related to the rate constant k and the concentration of the esters (B). To solve the differential equation (2). B₀ stands for the initial concentration of the esters in equation (2). Therefore, the value of k can be measured through recording the concentration of the esters (B) with time (t).

a)	MeOH + X⁻	-*	[MeOH····X]⁻ A
b)	[MeOH X]⁻ + A	- R ₁ 000 B	$CR_2 \xrightarrow{k} [R_1OH \cdots X]^- + MeOOCR_2$
c)	[R ₁ OH X] ⁻ +	MeOH	≿ [MeOH X]⁻ + R ₁ OH A
$dB/dt = k^*A^*B \qquad (7)$		(1)	
$\ln(B/B_0) = k^*A^*t$ (2)		(2)	

Figure S1. The value of k can be measured via recording the concentration of the esters (B) with time (t).

Solution A: NaOH (12 mg) was solved in *d*-methanol (1.2 mL).

Solution B: NaOH (20 mg) was solved in methanol (20 mL). The solution was kept at 70 $^{\circ}$ C for 2 h and then was evaporated to removing most of the methanol. The process was repeated for 3 times to obtain fresh MeONa. Then the concentrate (fresh MeONa) was solved in *d*-methanol (2.0 mL).

Solution C: NaOH (12 mg) was solved in D₂O (1.2 mL).

Solution D: NaOH (20 mg) was solved in methanol (20 mL). The solution was kept at 70 $^{\circ}$ C for 2 h and then was evaporated to removing most of the methanol. The process was repeated for 3 times to obtain fresh MeONa. Then the concentrate (fresh MeONa) was solved in D₂O (2.0 mL).

The General NMR Experiments for Transesterification of Ethyl Benzoate in *d*-Methanol: a) Ethyl benzoate (10 μ L) was solved in *d*-methanol (0.5 mL) and then was added solution A (28 μ L, 0.1 eq). The NMR spectrum was recorded with times. b) Ethyl benzoate (10 μ L) was solved in *d*-methanol (0.5 mL) and then was added solution B (28 μ L, 0.1 eq). The NMR spectrum was recorded with times.

Figure **S2**. The values of k were measured for transesterification of ethyl benzoate in *d*-methanol. a) NaOH (0.1 eq) as catalyst, $k_{OH}*A = 5.584 \times 10^{-5} \pm 0.116$ /s, $R^2 = 0.9987$; b) NaOMe (0.1 eq) as catalyst, $k_{MeO}*A = 4.04 \times 10^{-5} \pm 0.083$ /s, $R^2 = 0.9987$, therefore, $k_{OH}/k_{MeO} = 1.38$.

The General NMR Experiments for Transesterification of n-Propyl Acetate in *d*-Methanol: a) n-Propyl acetate (10 μ L) was solved in *d*-methanol (0.5 mL) and then was added solution A (7 μ L, 0.02 eq). The NMR spectrum was recorded with times. b) n-Propyl acetate (10 μ L) was solved in *d*-methanol (0.5 mL) and then was added solution B (7 μ L, 0.02 eq). The NMR spectrum was recorded with times.

Figure **S3**. The values of k were measured for transesterification of n-Propyl acetate in *d*-methanol. a) NaOH (0.02 eq.) as catalyst, $k_{OH}*A = 10.83 \times 10^{-5} \pm 0.52/\text{s}$, $R^2 = 0.9932$; b) NaOMe (0.02 eq) as catalyst, $k_{MeO}*A = 8.261 \times 10^{-5} \pm 0.36/\text{s}$, $R^2 = 0.9944$, therefore, $k_{OH}/k_{MeO} = 1.31$.

The General NMR Experiments for Transesterification of Ethyl Benzoate in *d*-Methanol:D₂O (9:1): a) Ethyl benzoate (10 μ L) was solved in *d*-methanol:D₂O (9:1) (0.5 mL) and then was added solution A (28 μ L, 0.1 eq). The NMR spectrum was recorded with times. b) Ethyl benzoate (10 μ L) was solved in *d*-methanol:D₂O (9:1) (0.5 mL) and then was added solution B (28 μ L, 0.1 eq). The NMR spectrum was recorded with times.

Figure S4. The values of k were measured for transesterification of ethyl benzoate in *d*-MeOD:D₂O (9:1). a) NaOH (0.1 eq) as catalyst, $k_{OH}*A = 4.267 \times 10^{-5} \pm 0.103/s$, $R^2 = 0.9982$; b) NaOMe (0.1 eq) as catalyst, $k_{MeO}*A = 2.855 \times 10^{-5} \pm 0.039/s$, $R^2 = 0.9994$, therefore, $k_{OH}/k_{MeO} = 1.49$.

The General NMR Experiments for Transesterification of Ethyl Benzoate in *d*-Methanol:D₂O: a) Ethyl benzoate (10 μ L) was solved in *d*-methanol (0.5 mL) and then was added solution C (28 μ L, 0.1 eq). The NMR spectrum was recorded with times. b) Ethyl benzoate (10 μ L) was solved in *d*-methanol (0.5 mL) and then was added solution D (28 μ L, 0.1 eq). The NMR spectrum was recorded with times.

Figure **S5**. The values of k were measured for transesterification of ethyl benzoate in *d*-MeOD:D₂O. a) NaOH (0.1 eq) as catalyst, $k_{OH}*A = 3.675 \times 10^{-5} \pm 0.091/s$, $R^2 = 0.9982$; b) NaOMe (0.1 eq) as catalyst, $k_{MeO}*A = 3.617 \times 10^{-5} \pm 0.071/s$, $R^2 = 0.9988$, therefore, $k_{OH}/k_{MeO} = 1$.

Figure **S6a.** Recorded transesterification of ethyl benzoate in *d*-methanol catalyzed by NaOH in 5 min.

Figure **S6c.** Recorded transesterification of ethyl benzoate in *d*-methanol catalyzed by NaOH in 30 min.

Figure **S6e.** Recorded transesterification of ethyl benzoate in *d*-methanol catalyzed by NaOH in 60 min.

