This version of the ESI replaces the previous version published on 18.05.2018 to correctly display the 13C NMR of 4e on page 47.

Supporting information

for

Towards Environmentally Friendlier Suzuki-Miyaura Reactions with Pd-NHC (NHC = N-Heterocyclic Carbene) Complexes

Caroline M. Zinser^a, Katie Warren^a, Rebecca E. Meadows^b, Fady Nahra^{*c}, Abdullah M. Al-Majid^[d], Assem M. Barakat^[d], Mohammad S. Islam^[d], Steven P. Nolan^{*c,d} and Catherine S. J. Cazin^{*c}

^aEaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST (UK). ^bAstraZeneca, Chemical Development, Pharmaceutical Technology and Development, Etherow T/10, Silk Road Business Park, Charter Way, Macclesfield, Cheshire, SK10 2NA, UK

^eDepartment of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium.

E-mail: Catherine.cazin@ugent.be: steven.nolan@ugent.be

^eChemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Table of Contents

General information	S2
Synthesis of palladates	S2
Synthesis of Pd-NHC complexes from palladates	S2
Suzuki-Miyaura coupling	S3
Products of the Suzuki-Miyaura reaction (Scheme 6)	
NMR spectra of complexes	S14
NMR spectra of cross-coupling products	
References	S51

General information

All aryl halides and boronic acids were used as received. All bases were used as received (in air) or dried under vacuum at 100 °C (under inert atmosphere). All solvents were used as received when experiments were conducted in air. Degassed solvents were used when experiments were conducted under inert atmosphere. All [NHC·H][Pd(η^3 -R-allyl)Cl₂] were prepared from commercially available NHC·HCl and [Pd(η^3 -R-allyl)(μ -Cl)]₂. Flash chromatography was performed on silica gel 60 Å pore diameter and 40-63 μ m particles size. ¹H, ¹⁹F{¹H} and ¹³C{¹H} Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker-400 and 500 MHz spectrometers at ambient temperature in CDCl₃ purchased from Sigma Aldrich and dried over molecular sieves. Chemical shifts (ppm) are referenced to the residual solvent peak. Coupling constants, *J*, are given in hertz. Abbreviations used in the designation of the signals: s = singlet, d = doublet, dd = doublet of doublets, dd = doublet of doublets, m = multiplet. Elemental analyses were performed at London Metropolitan University.

Synthesis of palladates

Solvent screening - General procedure. In air, the corresponding NHC·HCl, $[Pd(\eta^3-R-allyl)(\mu-Cl)]_2$ and a magnetic stir bar were charged in a vial and solvent (1 mL) was added. The mixture was stirred at 60 °C for 1 hour. The reaction was allowed to cool for 1 min and the sample was concentrated to 1/3 of the original volume under reduced pressure. Microcrystalline product was collected by filtration and washed with minimum amount of cold acetone or ethanol if necessary. Solid dried under vacuum.

Entry	Solvents	Isolated yield (%)
1	Acetone	99
2	Cyclopentyl methyl ether	99
3	Pentane	99
4	Dichloromethane	99
5	Chloroform	99
6	Water	99
7	Ethyl acetate	99
8	Ethanol	99

Table S-1: Solver	nt optimization	[IPr·H][Pd(3 -cin)Cl ₂]
-------------------	-----------------	-------------	-------------------------------

Synthesis of Pd-NHC complexes from palladates

One-pot large scale synthesis of [Pd(IPr)(η^3 -cin)Cl]. In a round-bottom flask equipped with a stir bar, IPr·HCl (1.64 g, 3.86 mmol) and [Pd(η^3 -cin)(μ -Cl)]₂ (1.00 g, 1.93 mmol) were added, followed by ethanol (50 mL). K₂CO₃ (320 mg, 2.32 mmol) was added and the reaction was heated to 60 °C for 5 h. The solvent was removed from the crude product which was dissolved in dichloromethane (20 mL) and filtered through a pad of silica. A yellow crystalline solid was obtained in 98% (2.45 g) yield.

Synthesis of [Pd(IPr)(η^3 -cin)Cl] from palladate. In a round-bottom flask equipped with a stir bar, [IPr·H][Pd(η^3 -cin)Cl₂] (500 mg, 0.73 mmol) followed by ethanol (25 mL) and K₂CO₃ (140 mg, 1.01 mmol) were added. The reaction was heated to 60 °C for 5 h. The solvent was removed from the crude product which was dissolved in dichloromethane (10 mL) and filtered through a pad of silica. A yellow crystalline solid was obtained in 64% (300 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.50 (t, *J* = 7.7 Hz, 2H), 7.48-7.28 (d, *J* = 7.7 Hz, 4H), 7.12 (m, 5H), 5.09 (m, 1H), 4.36 (d, *J* = 12.9 Hz, 1H), 3.06 (m, 5H), 1.77 (d, *J* = 11.4

Hz, 1H), 1.43-1.36 (m, 12H), 1.16 (d, J = 7.1 Hz, 12H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 184.8 (C, carbene), 145.9 (C), 137.7 (C), 135.7 (C), 129.7 (CH) 128.0 (CH), 127.9 (CH), 127.1 (CH), 126.5 (CH), 124.0 (CH), 123.6 (CH), 108.6 CH), 90.0 (CH), 46.1 (CH₂), 33.9 (CH₂), 28.4 (CH), 26.0 (CH₃), 22.8 (CH₃).

Suzuki-Miyaura coupling

Pre-catalyst Optimization. The general procedure was followed using phenylboronic acid (60.9 mg, 0.5 mmol), 4-chloroanisole (61 μ L, 0.5 mmol) with K₂CO₃ (76 mg, 0.55 mmol) in ethanol (1 mL). The GC yield was determined using mesitylene as internal standard.

Table S-3: Optimisation of the pre-catalyst

[Pd] precatalyst (0.5 mol%)	GC yield ^a (%)
[IPr·H][Pd(η^3 -cinnamyl)Cl ₂]	93
$[IPr \cdot H][Pd(\eta^3 - allyl)Cl_2]$	55
$[IPr^* \cdot H][Pd(\eta^3 - cinnamyl)Cl_2]$	88
$[SIPr \cdot H][Pd(\eta^3 - cinnamyl)Cl_2]$	30
$[IPr \cdot H][Pd(\eta^3 - 2 - Me - allyl)Cl_2]$	80
[IPr·H] [Pd(η^3 -crotyl)Cl ₂]	8
$[IPr \cdot H][Pd(Ind^{tBu})Cl_2]$	n.r.
$[IPent \cdot H][Pd(n^{3}-cinnamv])C]_{2}]$	n.r.

^a The GC yield was determined using mesitylene as internal standard. Average of two runs.

Effect of the boron source. $[IPr \cdot H][Pd(\eta^3 - cin)Cl_2]$ (0.5 mol%), K_2CO_3 (0.7 mmol) and a stirring bar were added to a screw-cap vial. Ethanol (1 mL) was then added. Afterwards, 4-chloroanisole (0.5 mmol) and the corresponding aryl boron source (0.55 mmol) were added through an ethanol solution (1 mL). The reaction was left to stir at 40 °C for 16 h. The GC yield was determined using mesitylene as internal standard.

 Table S-2: Boron source effect

Entry	Boron source (0.55 mmol)	GC yield (%)	GC yield (%) ^a
1	Phenyl boronic acid	0	99
2	Potassium phenyltrifluoroborate	8	90
3	Aryl boronic pinacol ester	40	94

^aAn activation step of 1 h was used: [IPr·H][Pd(η^3 -cin)Cl₂] and K₂CO₃ were stirred for 1 h in ethanol, before the substrates were added.

Solvent screening. The general procedure was followed using $[IPr \cdot H][Pd(\eta^3 - cin)Cl_2]$ (0.5 mol%), phenylboronic acid (60.9 mg, 0.5 mmol), 4-chloroanisole (61 µL, 0.5 mmol) with K₂CO₃ (76 mg, 0.55 mmol) in the corresponding solvent (1 mL). The GC yield was determined using mesitylene as internal standard.

Entries	Solvent (1 mL)	GC yield (%) ^b
1	Ethanol	92
2	Iso-propanol	45
3	<i>n</i> -butanol	53
4	Acetone	n.r.
5	Water	trace
6	Toluene	n.r.
7	Dioxane	n.r.
8	THF	n.r.
9	Methanol	5
10	Ethanol:water 1:1	35
11	Ethanol:water 2:1	55
12	Ethanol:water 9:1	73
13 ^a	Iso-propanol	23
14 ^a	<i>n</i> -butanol	trace
15 ^a	Toluene	n.r.

 Table S-4: Solvent screening

^aTemperature used in the activation step was altered to the boiling point of the corresponding solvents. ^b GC yield determined using mesitylene as internal standard. Average of two runs.

Base screening. The general procedure was followed using $[IPr \cdot H][Pd(\eta^3 - cin)Cl_2]$ (0.5 mol%), phenyl boronic acid (60.9 mg, 0.5 mmol), 4-chloroanisole (61 µL, 0.5 mmol) with the corresponding base (0.55 mmol) in the corresponding solvent (1 mL). The GC yield was determined using mesitylene as internal standard.

Entries	Base (0.55 mmol)	GC yield (%) ^a
1	K ₂ CO ₃	92
2	Na ₂ CO ₃	5
3	Cs ₂ CO ₃	27
4	KHCO ₃	trace
5	NaHCO ₃	trace
6	КОН	72
7	NaOH	80
8	LiOH	20
9	NaHPO ₄	n.r.
10	K ₂ HPO ₄	n.r.
11	K ₃ PO ₄	40
12	KO ^t Am	78
13	KO'Bu	75
14	NaOOCH	n.r.
15	Imidazole	n.r.

 Table S-5: Base screening in ethanol

^a The GC yield was determined using mesitylene as internal standard. Average of two runs.

Entries	Base (1.1 equiv.)	GC yield (%) ^a
1	K ₂ CO ₃	47
2	Na ₂ CO ₃	0
3	Cs ₂ CO ₃	0
4	KHCO ₃	0
5	NaHCO ₃	0
6	КОН	55
7	NaOH	60
8	LiOH	trace
9	NaHPO ₄	0
10	K ₂ HPO ₄	0
11	K ₃ PO ₄	55
12	KO ^t Am	70
13	KO'Bu	72
14	NaOOCH	trace
15	Imidazole	trace

Table S-6: Base screening in *iso*-propanol

^a The GC yield was determined using mesitylene as internal standard. Average of two runs.

Entries	Base (1.1 equiv.)	GC yield (%) ^a
1	K ₂ CO ₃	53
2	Na ₂ CO ₃	n.r.
3	Cs_2CO_3	17
4	KHCO ₃	trace
5	NaHCO ₃	0
6	КОН	65
7	NaOH	80
8	LiOH	17
9	NaHPO ₄	0
10	K ₂ HPO ₄	0
11	K ₃ PO ₄	trace

 Table S-7: Base screening in *n*-butanol

^a The GC yield was determined using mesitylene as internal standard. Average of two runs.

Aryl boronic acid stoichiometry. The general procedure was followed using [IPr·H][Pd(η^3 -cin)Cl₂] (0.5 mol%), phenyl boronic acid (varying equivalences), 4-chloroanisole (61 µL, 0.5 mmol) with K₂CO₃ (76 mg, 0.55 mmol) in the corresponding solvent (1 mL). The GC yield was determined using mesitylene as internal standard.

1001000	ingi coronic acta optimication	
Entries	PhB(OH) ₂ (equiv.)	GC yield (%) ^a
1	1.0	90
2	1.1	82
3	1.2	87
4	1.3	82
5	1.4	85

Table S-8: Aryl boronic acid optimisation

^a The GC yield was determined using mesitylene as internal standard. Average of four runs.

Base stoichiometry. The general procedure was followed using $[IPr \cdot H][Pd(\eta^3 - cin)Cl_2]$ (0.5 mol%), phenyl boronic acid (60.9 mg, 0.5 mmol), 4-chloroanisole (61 µL, 0.5 mmol) with K₂CO₃ (varying equivalences) in ethanol (1 mL). The GC yield was determined using mesitylene as internal standard.

Entries	K ₂ CO ₃ (equiv.)	GC yield (%) ^a
1	1	93
2	1.1	95
3	1.2	93
4	1.3	97
5	1.4	99

Table S-9: Optimisation of base stoichiometry

^a The GC yield was determined using mesitylene as internal standard. Average of four runs.

Pre-catalyst loading. The general procedure was followed using $[IPr \cdot H][Pd(\eta^3 - cin)Cl_2]$ (0.1-0.5 mol%), phenyl boronic acid (60.9 mg, 0.5 mmol), 4-chloroanisole (61 µL, 0.5 mmol) with K₂CO₃ (97 mg,0.7 mmol) in ethanol (1 mL). The GC yield was determined using mesitylene as internal standard.

Tuble 5 100 optimisation of the precatingst fourthing		
Entries	$[\mathbf{IPr} \cdot \mathbf{H}][\mathbf{Pd}(\eta^{3} - \mathbf{cin})\mathbf{Cl}_{2}] (\mathbf{mol}\%)$	GC yield (%)
1	0.5	99
2	0.3	99
3	0.2	70
4	0.1	31

Table S-10: Optimisation of the precatalyst loading

^a The GC yield was determined using mesitylene as internal standard. Average of four runs.

Time and temperature optimisation

The general procedure was followed and aliquots were taken and analysed by Gas chromatography.

Table S-11: Reaction time optimisation at room temperature

Time (min)	GC yield (%)
10	0
30	0
60	0
120	33
180	75
240	88
300	88
360	89
420	90

^a The GC yield was determined using mesitylene as internal standard. Average of four runs.

Graph S-1: Kinetic profile at room temperature

Table S-12: Reaction time optimisation at 40 °C

Time (min)	GC yield (%)
10	0
30	19
60	66
120	91
180	99
240	99
300	99

^a The GC yield was determined using mesitylene as internal standard. Average of four runs.

Graph S-2: Reaction time optimisation at 40 °C.

Time (min)	GC yield (%)
0	0
10	17
30	88
60	89
120	89
180	90
240	90
300	90
360	90
420	90

Table S-13: Reaction time optimisation at 60 °C

^a The GC yield was determined using mesitylene as internal standard. Average of four runs.

Graph S-3: Reaction time optimisation at 60 °C.

Products of the Suzuki-Miyaura reaction (Scheme 6)

3a. Following the general procedure, from phenylboronic acid (60.9 mg, 0.5 mmol) and 4chloroanisole (61 μ L, 0.5 mmol), the product yielded 90 mg (97%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.57 (m, *J* = 8.1 Hz, 4H), 7.42 (m, *J* = 7.3 Hz, 2H), 7.31 (m, *J* = 7.5 Hz, 1H), 7.00 (t, *J* = 2.9 Hz, 1H), 6.98 (t, *J* = 2.1 Hz, 1H), 3.86 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 159.3 (C_{Ar}), 141.0 (C_{Ar}), 133.9 (C_{Ar}), 128.9 (CH_{Ar}), 128.3 (CH_{Ar}), 126.9 (CH_{Ar}), 126.8 (CH_{Ar}), 114.3 (CH_{Ar}), 55.5 (CH₃). Analytical data obtained were in agreement with the reported values.¹

3b. Following the general procedure, from phenylboronic acid (60.9 mg, 0.5 mmol) and 1-chloro-4-trifluoromethyl benzene (70 μ L, 0.5 mmol), the product yielded 105 mg (98%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.70 (s, 4H), 7.61-7.60 (m, 2H), 7.50-7.48 (m, 2H), 7.41 (m, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 144.9 (C_{Ar}), 139.9 (C_{Ar}), 129.5 (q, *J* = 32.5 Hz, C_{Ar⁻CF3}), 129.1 (CH_{Ar}), 128.3 (CH_{Ar}), 127.6 (CH_{Ar}), 127.4 (CH_{Ar}), 125.9 (q, *J* = 3.8 Hz, CH_{Ar}), 124.5(q, *J* = 271.8 Hz, CF₃). Analytical data obtained were in agreement with the reported values.²

3c. Following the general procedure, from *p*-tolylboronic acid (68 mg, 0.5 mmol) and 4-chloro-nitrobenzene (79 mg, 0.5 mmol), the product yielded 88.7 mg (89%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.30 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 9.3 Hz, 2H), 7.54 (d, *J* = 9.3 Hz, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 2.43 (s, 3H). ¹³C {¹H} NMR (100 MHz,

CDCl₃): δ (ppm) = 147.7 (C_{Ar}), 147.0 (C_{Ar}), 139.2 (C_{Ar}), 136.0 (C_{Ar}), 130.0 (CH_{Ar}), 127.6 (CH_{Ar}), 127.4 (CH_{Ar}), 124.3 (CH_{Ar}), 21.4 (CH₃). Analytical data obtained were in agreement with the reported values.²

3d. Following the general procedure, from *p*-tolylboronic acid (68 mg, 0.5 mmol) and 4chloroacetophenone (64 μ L, 0.5 mmol), the product yielded 100 mg (95%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.03 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 2.64 (s, 3H), 2.41 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 197.9 (COMe), 145.9 (C_{Ar}), 138.4 (C_{Ar}), 137.1 (C_{Ar}), 135.7 (C_{Ar}), 129.8 (CH_{Ar}), 129.1 (CH_{Ar}), 127.2 (CH_{Ar}), 127.1 (CH_{Ar}), 26.8 (CH₃), 21.3 (CH₃). Analytical data obtained were in agreement with the reported values.³

3e. Following the general procedure, from phenylboronic acid (61 mg, 0.5 mmol) and 4chlorobenzonitrile (69 mL, 0.5 mmol), the product yielded 80.7 mg (89%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.75-7.67 (m, 4H), 7.61-7.58 (m, 2H), 7.52-7.46 (m, 2H), 7.45-7.42 (dt, J = 5.2, 2.1 Hz, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 145.8 (C_{Ar}), 139.3 (C_{Ar}), 132.7 (CH_{Ar}), 129.3 (CH_{Ar}), 128.8 (CH_{Ar}), 127.9 (CH_{Ar}), 127.4 (CH_{Ar}), 119.1 (CN), 111.1 (C_{Ar}-_{CN}). Analytical data obtained were in agreement with the reported values.²

3f. Following the general procedure, from *p*-tolyl boronic acid (68 mg, 0.5 mmol) and 2chloroanisole (61 μ L, 0.5 mmol), the product yielded 88.4 mg (89%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.49 (d, *J* = 8.7 Hz, 2H), 7.35 (t, *J* = 7.1 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 7.09-7.01 (m, 2H), 3.85 (s, 3H), 2.44 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 156.6 (C_{Ar}), 136.7 (C_{Ar}), 135.7 (C_{Ar}), 130.9 (CH_{Ar}), 130.8 (C_{Ar}), 129.5 (CH_{Ar}), 128.9 (CH_{Ar}), 128.5 (CH_{Ar}), 120.9 (CH_{Ar}), 111.3 (CH_{Ar}), 55.6 (CH₃), 21.3 (CH₃). Analytical data obtained were in agreement with the reported values.³

3g. Following the general procedure, from phenylboronic acid (61 mg, 0.5 mmol) and 2-chloroaniline (64 mg, 0.5 mmol), the product yielded 68 mg (80%) as a brown solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.27 (d, *J* = 7.1 Hz, 1H), 7.59-7.36 (m, 4H), 7.23-7.04 (m, 2H), 6.86-6.67 (m, 2H), 4.02 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 143.6 (C_{Ar}), 139.6 (C_{Ar}), 135.8 (CH_{Ar}), 132.8 (CH_{Ar}), 130.6 (CH_{Ar}), 129.2 (CH_{Ar}), 128.9 (CH_{Ar}), 128.6 (CH_{Ar}), 128.1 (CH_{Ar}), 127.8 (C_{Ar}), 118.8 (CH_{Ar}), 115.8 (CH_{Ar}). Analytical data obtained were in agreement with the reported values.³

3h. Following the general procedure, from 2-tolylboronic acid (68 mg, 0.5 mmol) and 2chlorotoluene (67 μ L, 0.5 mmol), the product yielded 82.5 mg (90%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.28-7.22 (m, 6H), 7.13 (d, *J* = 7.2 Hz, 2H), 2.07 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 141.7 (C_{Ar}), 135.9 (C_{Ar}), 129.9 (CH_{Ar}), 129.4 (CH_{Ar}), 127.3 (CH_{Ar}), 125.7 (CH_{Ar}), 20.0 (CH₃). Analytical data obtained were in agreement with the reported values.¹

3i. Following the general procedure, from 2-tolylboronic acid (68 mg, 0.5 mmol) and 2chloroanisole (61 μ L, 0.5 mmol), the product yielded 96.7 mg (97%) as a yellowish/white oil. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.41-7.35 (m, 1H), 7.29-7.18 (m, 5H), 7.08-6.99 (m, 2H), 3.80 (s, 3H), 2.19 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 156.7 (C_{Ar}), 138.8 (C_{Ar}), 137.0 (C_{Ar}), 131.1 (CH_{Ar}), 131.0 (C_{Ar}), 130.1 (CH_{Ar}), 129.7 (CH_{Ar}), 128.7 (CH_{Ar}), 127.4 (CH_{Ar}), 125.6 (CH_{Ar}), 120.6 (CH_{Ar}), 110.8 (CH_{Ar}), 55.5 (CH₃), 20.1 (CH₃). Analytical data obtained were in agreement with the reported values.⁵

3j. Following the general procedure, from phenylboronic acid (61 mg, 0.5 mmol) and 2chloro-6-trifluoromethyl pyridine (91 mg, 0.5 mmol), the product yielded 112 mg (99%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.09-8.06 (m, 2H), 7.92-7.91 (m, 2H), 7.62-7.60 (m, 1H), 7.52 – 7.46 (m, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 157.9 (C_{Ar}), 148.5 (q, *J* = 34.5 Hz, C_{Py}-CF₃), 138.2 (CH_{Ar}), 137.9 (C_{Ar}), 129.9 (CH_{Ar}), 129.0 (CH_{Ar}), 127.3 (CH_{Ar}), 122.9 (CH_{Ar}), 121.7 (q, *J* = 274.3 Hz, CF₃), 118.6 (d, *J* = 2.7 Hz, CH_{Ar}). Analytical data obtained were in agreement with the reported values.⁶

3k. Following the general procedure, from phenylboronic acid (61 mg, 0.5 mmol) and 2chloropyridine (68 μ L, 0.5 mmol), the product yielded 69 mg (90%) as a brown solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.71 (m, *J* = 4.5 Hz, 1H), 8.01 (m, 2H), 7.77 (m, 2H), 7.50 (m, 2H), 7.45 (m, 1H), 7.25 (m, 1H) ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 158.0 (C_{Ar}), 148.5 (C_{Ar}), 148.1 (CH_{Ar}), 138.2 (CH_{Ar}), 137.9 (CH_{Ar}), 129.9 (CH_{Ar}), 129.1 (CH_{Ar}), 127.3 (CH_{Ar}), 123.0 (CH_{Ar}), 120.4 (CH_{Ar}), 118.6 (CH_{Ar}). Analytical data obtained were in agreement with the reported values.¹

31. Following the general procedure, from 4-methoxyphenylboronic acid (79 mg, 0.5 mmol) and 4-chlorotoluene (67 μ L, 0.5 mmol), the product yielded 84 mg (85%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.53-7.50 (m, 2H), 7.49-7.44 (m, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 6.98-6.96 (m, 2H), 3.85 (s, 3H), 2.39 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 159.1 (C_{Ar}), 138.1 (C_{Ar}), 136.5 (CH_{Ar}), 133.9 (C_{Ar}), 129.6 (CH_{Ar}), 128.1 (CH_{Ar}), 127.9 (C_{Ar}), 126.7 (CH_{Ar}), 114.3 (CH_{Ar}), 55.5 (CH₃), 21.2 (CH₃). Analytical data obtained were in agreement with the reported values.⁷

3m. Following the general procedure, from 4-methoxy phenylboronic acid (76 mg, 0.5 mmol) and 4-chloro-nitrobenzene (79 mg, 0.5 mmol), the product yielded 105 mg (91 %) as a beige solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.82 (d, *J* = 7.8 Hz, 2H), 7.71 (d, *J* = 8.9 Hz, 2H), 7.60 (d, *J* = 6.9 Hz, 2H), 7.03 (d, *J* = 9.7 Hz, 2H), 3.88 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 160.6 (C_{Ar}), 147.4 (C_{Ar}), 146.7 (C_{Ar}), 131.2 (C_{Ar}), 128.7 (CH_{Ar}), 127.2 (CH_{Ar}), 124.3 (CH_{Ar}), 114.8 (CH_{Ar}), 55.6 (CH₃). Analytical data obtained were in agreement with the reported values.⁸

3n. Following the general procedure, from 4-acetylphenyl boronic acid (82 mg, 0.5 mmol) and 4-chloro-nitrobenzene (79 mg, 0.5 mmol), the product yielded 103 mg (86 %) as a beige solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.32 (d, *J* = 10.8 Hz, 2H), 8.09 (d, *J* = 8.1 Hz, 2H), 7.78 (d, *J* = 9.1 Hz, 2H), 7.73 (d, *J* = 9.1 Hz, 2H), 2.56 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 197.6 (COMe), 147.7 (C_{Ar}), 146.3 (C_{Ar}), 143.2 (C_{Ar}), 137.2 (C_{Ar}), 129.2 (CH_{Ar}), 128.2 (CH_{Ar}), 127.7 (CH_{Ar}), 124.3 (CH_{Ar}), 26.8 (CH₃). Analytical data obtained were in agreement with the reported values.⁸

30. Following the general procedure, from 4-formylboronic acid (75 mg, 0.5 mmol) and 2chloropyridine (68 μ L, 0.5 mmol), the product yielded 65 mg (70%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 10.09 (s, 1H), 8.75 (d, *J* = 4.8 Hz, 1H), 8.19 (d, *J* = 8.7 Hz, 2H), 8.00 (d, *J* = 8.7 Hz, 2H), 7.82-7.81 (m, 2H), 7.33 (q, J = 4.6 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 192.1 (CH_{CHO}), 156.0 (C_{Ar}), 150.1 (CH_{Ar}), 145.0 (C_{Ar}), 137.2 (CH_{Ar}), 136.5 (C_{Ar}), 130.5 (CH_{Ar}), 130.3 (CH_{Ar}), 128.1 (CH_{Ar}), 127.6 (CH_{Ar}), 123.3 (CH_{Ar}), 121.4 (CH_{Ar}). Analytical data obtained were in agreement with the reported values.⁹

3p. Following the general procedure, from 1-naphthalene boronic acid (86 mg, 0.5 mmol) and 2-bromopyrimidine (79.5 mL, 0.5 mmol), the product yielded 102.3 mg (99%) as a brown oil. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 9.31 (s, 1H), 8.90 (s, 2H), 7.98-7.95 (m, 2H), 7.77 (d, *J* = 8.9 Hz, 1H), 7.61-7.42 (m, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 157.7 (C_{Ar}), 157.4 (C_{Ar}), 134.5 (C_{Ar}), 133.9 (C_{Ar}), 132.5 (CH_{Ar}), 131.3 (CH_{Ar}), 129.5 (CH_{Ar}), 128.8 (CH_{Ar}), 127.8 (CH_{Ar}), 127.2 (CH_{Ar}), 126.5 (CH_{Ar}), 125.5 (CH_{Ar}), 124.6 (CH_{Ar}). Analytical data obtained were in agreement with the reported values.⁹

3q. Following the general procedure, from 1-naphthalene boronic acid (86 mg, 0.5 mmol) and 2-chloropyridine (68 μ L, 0.5 mmol), the product yielded 101.9 mg (99%) as a beige oil. ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.80 (m, *J* = 4.9, 1.8, 0.9 Hz, 1H), 8.12-8.05 (m, 1H), 7.95-7.89 (m, 2H), 7.84 (m, *J* = 7.7, 1.8 Hz, 1H), 7.63-7.57 (m, 3H), 7.49 (m, *J* = 6.8, 5.4 Hz, 3H), 7.34 (m, *J* = 7.6, 4.9, 1.2 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 159.4 (C_{Ar}), 149.6 (CH_{Ar}), 138.6 (C_{Ar}), 136.5 (CH_{Ar}), 134.0 (C_{Ar}), 131.3 (C_{Ar}), 129.0 (CH_{Ar}), 128.5 (CH_{Ar}), 127.6 (CH_{Ar}), 126.6 (CH_{Ar}), 125.9 (CH_{Ar}), 125.7 (CH_{Ar}), 125.4 (CH_{Ar}), 125.2 (CH_{Ar}), 122.2 (CH_{Ar}). Analytical data obtained were in agreement with the reported values.¹⁰

3r. Following the general procedure, from 1-naphthalene boronic acid (86 mg, 0.5 mmol) 2chloronaphthalene (81.3 mL, 0.5 mmol), the product yielded 126 mg (99%) as a brown oil. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.96 (dd, J = 8.1, 2.6 Hz, 4H), 7.62 (t, J = 7.7 Hz, 2H), 7.51-7.45 (m, 4H), 7.41-7.38 (m, 2H), 7.31-7.29 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 138.6 (C_{Ar}), 133.6 (C_{Ar}), 133.0 (C_{Ar}), 128.3 (CH_{Ar}), 128.0 (CH_{Ar}), 128.0 (CH_{Ar}), 126.7 (CH_{Ar}), 126.1 (CH_{Ar}), 125.9 (CH_{Ar}), 125.5 (CH_{Ar}). Analytical data obtained were in agreement with the reported values.¹¹

3s. Following the general procedure, from 1-naphthalene boronic acid (86 mg, 0.5 mmol) and 1-chloro-2-,4 difluorobenzene (74.3 mg, 0.5 mmol), the product yielded 95.8 mg (80%) as a brown solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.93 (d, *J* = 8.6 Hz, 2H), 7.64-7.34 (m, 6H), 7.05-6.96 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 162.7 (dd, *J* = 253.0, 11.8 Hz, C_{Ar}-F), 160.3 (dd, *J* = 253.4, 11.7 Hz, C_{Ar}-F), 133.7 (C_{Ar}), 133.2-133.1 (m, C_{Ar} + CH_{Ar}), 132.0 (C_{Ar}), 128.7 (CH_{Ar}), 128.5 (CH_{Ar}), 128.0 (CH_{Ar}), 126.5 (CH_{Ar}), 126.1 (CH_{Ar}), 125.7 (CH_{Ar}), 125.4 (CH_{Ar}), 124.2 (dd, *J* = 16.7, 3.8 Hz, C_{Ar}), 111.5 (dd, *J* = 21.0, 3.7 Hz, CH_{Ar}), 104.2 (t, *J* = 25.8 Hz, CH_{Ar}).Analytical data obtained were in agreement with the reported values.¹²

3t. Following the general procedure, from (*E*)-styrylboronic acid (74 mg, 0.5 mmol) and 1chloronaphthalene (82 mg, 0.5 mmol), the product yielded 80 mg (69 %) as a beige solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.92-7.75 (m, 2H), 7.61-7.15 (m, 10H), 6.99-6.96 (m, 1H), 6.69-6.66 (m, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 137.8 (C_{Ar}), 137.5 (CH_{Ar}), 135.2 (C_{Ar}), 133.9 (C_{Ar}), 133.0 (CH_{Ar}), 131.9 (CH_{Ar}), 131.5 (C_{Ar}), 129.4 (CH_{Ar}), 128.9 (CH_{Ar}), 128.8 (CH_{Ar}), 127.7 (CH_{Ar}), 126.8 (CH_{Ar}), 126.5 (CH_{Ar}), 126.2 (CH_{Ar}), 126.0 (CH_{Ar}), 125.8 (CH_{Ar}), 123.9 (CH_{Alkene}), 123.8 (CH_{Alkene}). Analytical data obtained were in agreement with the reported values.⁷

3u. Following the general procedure, from (*E*)-styrylboronic acid (74 mg, 0.5 mmol) and 4chlorobenzonitrile (69 mg, 0.5 mmol), the product yielded 76 mg (74 %) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.65-7.63 (m, 2H), 7.60-7.58 (m, 2H), 7.55-7.53 (m, 2H), 7.41-7.37 (m, 2H), 7.34-7.30 (t, *J* = 7.27 Hz, 1H), 7.22 (d, *J* = 16.3 Hz, 1H), 7.09 (d, *J* = 16.3 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 142.0 (C_{Ar}), 136.4 (C_{Ar}), 132.6 (CH_{Ar}), 132.5 (CH_{Ar}), 129.0 (CH_{Ar}), 128.8 (CH_{Ar}), 127.1 (CH_{Alkene}), 127.0 (CH_{Alkene}), 126.9 (CH_{Ar}), 119.2 (CN), 110.7 (C_{Ar}-CN). Analytical data obtained were in agreement with the reported values.¹³

3v. Following the general procedure, from (E)-styrylboronic acid (74 mg, 0.5 mmol) and 4chlorobenzaldehyde (70 mg, 0.5 mmol), the product yielded 100.5 mg (96 %) as a beige solid. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 10.00 (s, 1H), 7.89 (d, *J* = 8.7 Hz, 2H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.34 (m, 1H), 7.29 (d, *J* = 4.9 Hz, 1H), 7.15 (d, *J* = 16.3 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 191.8 (CHO), 143.5 (C_{Ar}), 136.7 (C_{Ar}), 135.4 (C_{Ar}), 132.2 (CH_{Ar}), 130.4 (CH_{Ar}), 129.0 (CH_{Ar}), 128.6 (CH_{Ar}), 127.5 (CH_{Ar}), 127.0 (CH_{Alkene}). Analytical data obtained were in agreement with the reported values.¹⁴ **4a.** Following the general procedure, from 4-fluorobenzene boronic acid (70 mg, 0.5 mmol) and 2-bromoanisole (61 μ L, 0.5 mmol), the product yielded 90 mg (89 %).¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.40-7.36 (m, 2H, Ar-H), 7.16-7.21 (m, 2H, Ar-H), 6.97-7.10 (m, 2H, Ar-H), 6.85-6.95 (m, 2H, Ar-H), 3.68 (s, 3H, OCH₃).¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 156.3, 131.1, 131.0, 130.7, 129.6, 128.4, 120.8, 114.9, 114.7, 111.2, 55.4. Analytical data obtained were in agreement with the reported values.¹⁵

4b. Following the general procedure, from 4-acetylphenyl boronic acid (82 mg, 0.5 mmol) and 2-bromoanisole (61 μ L, 0.5 mmol), the product yielded 86 mg (76 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.92 (d, *J* = 7.6 Hz 1H, Ar-H), 7.55 (d, *J* = 8.0 Hz 1H, Ar-H), 7.24 – 7.32 (m, 2H, Ar-H), 6.97 (t, *J* = 7.6 Hz 1H, Ar-H), 6.93 (d, *J* = 8.4 Hz, 1H, Ar-H), 3.73 (s, 3H, OCH₃), 2.55 (s, 3H, COCH₃), ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 197.9, 156.4, 143.6, 135.5, 130.7, 129.7, 128.0, 120.9, 111.3, 55.5, 26.6. Analytical data obtained were in agreement with the reported values.¹⁶

4c. Following the general procedure, from 4-fluorobenzene boronic acid (70 mg, 0.5 mmol) and 3-bromoanisole (61 μ L, 0.5 mmol), the product yielded 87 mg (86 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.43 – 7.48 (m, 2H, Ar-H), 7.24 – 7.29 (m, 1H, Ar-H), 6.98 – 7.06 (m, 4H, Ar-H), 6.80 – 6.83 (m, 1H, Ar-H), 3.77 (s, 3H, OCH₃), ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 159.9, 141.7, 137.2, 129.8, 128.7, 119.5, 115.7, 115.4, 112.8, 112.5, 55.3. Analytical data obtained were in agreement with the reported values.¹⁷

4d. Following the general procedure, from 4-acetylphenyl boronic acid (82 mg, 0.5 mmol) and 3-bromoanisole (61 μ L, 0.5 mmol), the product yielded 91 mg (81 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.04 (d, *J* = 8.4 Hz 2H, Ar-H), 7.69 (d, *J* = 8.4 Hz 2H, Ar-H), 7.40 (t, *J* = 7.6 Hz, 1H, Ar-H), 7.40 (t, *J* = 7.6 Hz, 1H, Ar-H), 7.23 (d, *J* = 7.2 Hz, 1H, Ar-H), 7.16 (s, 1H, Ar-H), 6.98-6.96 (dd, *J* = 2.8, 8.0 Hz, 1H, Ar-H), 3.89 (s, 3H, OCH₃), 2.65 (s, 3H, COCH₃), ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 196.7, 158.9, 144.5, 140.3, 134.9, 128.9, 127.8, 126.2, 118.7, 112.5, 112.0, 54.3, 25.6. Analytical data obtained were in agreement with the reported values.¹⁶

4e. Following the general procedure, from 4-(trifluoromethyl)phenylboronic acid (95 mg, 0.5 mmol) and 3-bromoanisole (61 μ L, 0.5 mmol), the product yielded 102 mg (81 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.59 – 7.60 (m, 4H, Ar-H), 7.30 (t, *J* = 8.0 Hz, 1H, Ar-H), 7.03 – 7.10 (m, 2H, Ar-H), 6.87 - 6.85 (dd, *J* = 3.6, 8.0 Hz, 1H, Ar-H), 3.78 (s, 3H, OCH₃), ¹³C {¹H} NMR (100 MHz, CDCl₃) δ (ppm) = 160.1, 144.6, 141.2, 127.6, 127.3, 125.8, 125.6, 122.9, 119.6, 113.3, 55.2. Analytical data obtained were in agreement with the reported values.¹⁸

4f. Following the general procedure, from 4-(methoxy)phenylboronic acid (95 mg, 0.5 mmol) and 3-bromoanisole (61 μ L, 0.5 mmol), the product yielded 93 mg (87 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.60 (d, J = 8.8 Hz, 2H, Ar-H), 7.55 (d, J = 8.8 Hz, 1H, Ar-H), 7.40 (t, J = 7.6 Hz, 1H, Ar-H), 7.17 – 7.24 (m, 2H, Ar-H), 7.17 – 7.24 (m, 2H, Ar-H), 7.02 – 7.07 (m, 2H, Ar-H), 6.93 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 158.9, 159.2, 158.6, 142.3, 133.4, 128.1, 126.7, 119.1, 114.2, 112.1, 55.2. Analytical data obtained were in agreement with the reported values.¹⁸

4g. Following the general procedure, from phenylboronic acid (60 mg, 0.5 mmol) and 4bromoanisole (61 μ L, 0.5 mmol), the product yielded 74 mg (85 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.46 (t, *J* = 8.8 Hz, 4H, Ar-H), 7.46 (t, *J* = 8.8 Hz, 4H, Ar-H), 7.34 (t, *J* = 8.0 Hz, 2H, Ar-H), 7.22 (t, *J* = 7.2 Hz, 1H, Ar-H), 6.90 (d, *J* = 6.8 Hz, 2H, Ar-H), 3.77 (s, 3H, OCH₃). Analytical data obtained were in agreement with the reported values.¹⁹ **4h.** Following the general procedure, from 4-acetylphenylboronic acid (82 mg, 0.5 mmol) and 2-bromopyridine (79 mg, 0.5 mmol), the product yielded 65 mg (66 %). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 8.61 – 8.62 (m, 1H, Ar-H), 7.96 – 7.97 (m, 5H, Ar-H), 7.16 – 7.20 (m, 1H, Ar-H), 2.53 (s, 3H, OCH₃). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ (ppm) = 197.7, 155.8, 149.7, 149.6, 143.3, 136.9, 128.7, 128.6, 126.9, 126.8, 122.8, 121.0, 26.6. Analytical data obtained were in agreement with the reported values²⁰

NMR spectra of complexes (¹H and ¹³C {¹H}, CDCl₃) [IPr·H][Pd(³-cin)Cl₂] 2a

[IPr·H][Pd(³-2-Me-allyl)Cl₂] 2b

 $[IPr \cdot H][Pd(\eta^{3} - Ind^{t}Bu)Cl_{2}] \ 2d$

[SIPr·H][Pd(³-cin)Cl₂] 2e

[IPent·H][Pd(³-cin)Cl₂] 2f

[IPr*·H][Pd(³-cin)Cl₂] 2g

NMR spectra of cross-coupling products (¹H and $^{13}C\{^{1}H\}$ NMR) Product, 3a

Product, 3b

Product,	3c
----------	----

Product, 3d

Product, 3e

Product, 3g

Product, 3h

Product, 3i

Product, 3j

Product, 3k

Product, 3l

Product, 3m

Product, 3n

Product, 3o

Product, 3p

Product, 3s

Product, 3t

Product, 3u

Product, 4g

References

1. R. B. Bedford, C. S. J. Cazin, M. B. Hursthouse, M. E. Light, V. J. M. Scordia, *Dalton Trans.*, 2004, 3864-3868.

2. V. Ha Nguyen, M. B. Ibrahim, W. W. Mansour, B. M. El Ali, H. Vinh Huynh, *Organometallics*, **2017**, *36*, 2345-2353.

- 3. Y. Yang, N. J. Oldenhuis, S. L. Buchwald, Angew. Chem. Int. Ed., 2013, 52, 615-619.
- 4. R. S. Ando, H. Matsunaga and T. Ishizuka, J. Org. Chem., 2017, 82, 1266-1272.
- 5. O. Navarro, N. Marion, J. Mei and S. P. Nolan, Chem. Eur. J., 2006, 12, 5142-5148.
- 6. P. Petiot, A. Gagnon, Eur. J. Org. Chem., 2013, 24, 5282-5289.
- 7. M. A. Zolfigol, T. Azaabakht, V. Khakyzadeh, R. Nejatyami and D. M. Perrin, *RSC Adv.*, **2014**, *4*, 40036-40042.

8. L. Xu, C. Liu, S. Liu, Z. Ren, D. J. Young and J. Lang, *Tetrahedron*, **2017**, *73*, 3125-3132. 9. Y. Zou, G. Yue, J. Yu and J. Zhou, *Eur. J. Org. Chem.*, **2014**, *27*, 5901- 5905.

- 10. M. R. Yadav, M. Nagaoka, M. Kashihara, R. Zhong, T. Miyazaki, S. Sakaki and Y. Nakao, J. Am. Chem. Soc., 2017, 139, 9423-9426.
- 11. K. Yasamut, J. Jongcharoenkamol, S. Ruchiraw and P. Ploypradith, *Tetrahedron*, **2016**, 72, 5994-6000.
- 12. L. Niu, H. Zhang, H. Yang and H. Fu, Synlett, 2014, 25, 995-1000.
- 13. H. Firouzabadi, N. Iranpoor, M. Gholinejad, S. Akbari and N. Jeddi, *RSC Adv.*, **2014**, *4*, 17060-17070.
- 14. R. Hajipour, F. Rezaei and Z. Khorsandi, Green Chem., 2017, 19, 1353-1361.
- 15. W. Wu, O.Teng, Y. Chua, H. Vnh Huynh, H. A. Doing, Organometallics, 2017, 36, 2293-2297
- 16. L. Zhang, H. Li, D. J. Young, Y. Wang, J. Lang, *Inorg. Chem.*, **2017**, *56*, 11230-11243.
- 17. S. Keesara, S. Parvathareni, New. J. Chem., 2016, 18, 7596-7603.
- 18. P.R. Melvin, N. Hazari, M. M. Beroni, H. P. Shak, M. J. Williams, Org. Lett., **2016**, 18, 5784-5787.

19. O. Navarro, N. Marion, Y. Oonishi, R. A. Kelly III, S. P. Nolan, J. Org. Lett., 2006, 71, 685-692.

20. T. Ichikawa, M. Netsu, M. Mizuno, T. Mizusaki, Y. Takagi, Y. Sawama, Y. Monguchi, H. Sajihi, *Adv. Synth. Catal.* **2017**, *359*, 2269-2279.