One-pot synthesis of amines from biomass resources catalyzed by HReO_{4}

João A. T. Caetano and Ana C. Fernandes*

Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
anacristinafernandes@tecnico.ulisboa.pt

1 General information 1
2 General procedure for the conversion of xylose into furfural catalyzed by 2 HReO_{4}
3 General procedure for the one-pot synthesis of furfurylamines 2
4 Characterization of the products 2

1.General information

All the reactions were carried out under air atmosphere and without any dry solvent. Carbohydrates, anilines, silanes and the catalyst HReO_{4} ($75-80 \%$ aqueous solution) were obtained from commercial suppliers and were used without further purification. Flash chromatography was performed on MN Kieselgel 60M 230-400 mesh. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were measured on a Bruker Avance $\mathrm{II}^{+} 400 \mathrm{MHz}$ and 300 MHz spectrometers. Chemical shifts are reported in parts per million (ppm) downfield from an internal standard. The furfural yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using mesitylene as internal standard, the pulse sequence $\mathrm{zg} 30, \mathrm{D} 1=1.0 \mathrm{~s}$ and position of $\mathrm{O} 1=2470.97 \mathrm{~Hz}$.

2.General procedure for the conversion of xylose into furfural catalyzed by $\mathbf{H R e O}_{\mathbf{4}}$

To a Schlenk flask equipped with a J. Young tap containing a solution of xylose (1.0 mmol) in 1,4-dioxane (10 mL) was added $\mathrm{HReO}_{4}(5 \mathrm{~mol} \%)$. The reaction mixture was stirred in a closed Schlenk at $140{ }^{\circ} \mathrm{C}$ during 2 h . The yield of furfural was determined by spectroscopy ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard.

3.General procedure for the one-pot synthesis of furfurylamines

To a Schlenk flask equipped with a J. Young tap containing a solution of carbohydrate (1.0 mmol of pentose) in 1,4-dioxane (10 mL) was added $\mathrm{HReO}_{4}(5 \mathrm{~mol} \%)$. The reaction mixture was stirred in a closed Schlenk at $140^{\circ} \mathrm{C}$ during 2 h . Then, the reaction mixture was cooled at room temperature and aniline (1.0 mmol) and dimethylphenylsilane (1.2 mmol) was added. After 1 h at $140^{\circ} \mathrm{C}$, the reaction mixture was evaporated and the residue was purified by flash chromatography with appropriate mixtures of n-hexane:ethyl acetate, affording the furfurylamines.

4. Characterization of the products

Table 3, entry 2

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.70,8.73 \mathrm{~Hz}, 2 \mathrm{H}), 6.64-6.60$ $(\mathrm{m}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=3.06 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=3.06 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.89$ (brs, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.2\left(\mathrm{~d}, J_{\text {CF }}=241.5 \mathrm{~Hz}\right.$), 152.7 , $144.0(\mathrm{~d}$, $\left.J_{C F}=1.93 \mathrm{~Hz}\right), 142.1,115.7\left(\mathrm{~d}, J_{C F}=22.2 \mathrm{~Hz}\right), 114.2\left(\mathrm{~d}, J_{C F}=7.4 \mathrm{~Hz}\right), 110.4,107.2$, 42.1 ppm . Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNO}: \mathrm{C}, 69.10$; H, 5.27; N, 7.33. Found: C, 69.33; H, 5.48; N, 7.59.

Table 3, entry 3

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87(\mathrm{~d}, J=8.67 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.67$
$\mathrm{Hz}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=0.69 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{brs}, 1 \mathrm{H}), 4.33(\mathrm{~d}$,
$J=2.91 \mathrm{~Hz}, 2 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.4,151.8,151.5$, $142.2,131.5,118.8,111.8,110.5,107.4,51.6,40.7 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.83; H, 5.90; N, 6.27.

Table 3, entry 4

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{t}, J=0.81,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.73 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=2.64,6.09 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~d}$, $J=3.12 \mathrm{~Hz}, 1 \mathrm{H}$), $4.27(\mathrm{~s}, 2 \mathrm{H}), 4.13$ (brs, 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 151.7, 147.1, 142.3, 132.8, 130.7, 120.4, 114.2, 112.9, 110.5, 107.5, 41.3 ppm. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}$: C, 54.57 ; H, 3.75; N, 5.79. Found: C, 54.70; H, 3.93; N, 5.96.

Table 3, entry 5

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.73 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.73$ $\mathrm{Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=1.68 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=2.82 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.05$ (brs, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.3,146.7,142.2,132.1,114.8,110.5$, 109.8, 107.3, 41.5 ppm . Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrNO}$: C, 52.41 ; H, 4.00; N, 5.56. Found: C, 52.58; H, 3.98; N, 5.69.

Table 3, entry 6

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=3.18 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.58$ $\mathrm{Hz}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.26$ (d, $J=2.82 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (brs, 1H), 4.35 (d, $J=5.25 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.2,150.8,142.2,133.5,120.4,112.4$, 110.4, 107.5, 98.8, 40.3 ppm. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 72.71 ; \mathrm{H}, 5.08 ; \mathrm{N}, 14.13$. Found: C, 72.97; H, 5.28; N, 14.29.

Table 3, entry 7

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=6.27 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.21$ (brs, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.0,147.8,142.3,131.65(\mathrm{q}$, $\left.J_{C F}=31.56 \mathrm{~Hz}\right), 129.8,124.4\left(\mathrm{~d}, J_{C F}=270.6 \mathrm{~Hz}\right), 116.1,114.5\left(\mathrm{~d}, J_{C F}=3.68 \mathrm{~Hz}\right)$, $110.5,109.40\left(\mathrm{~d}, J_{C F}=3.62 \mathrm{~Hz}\right), 107.5,41.2 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}$, 59.75; H, 4.18; N, 5.81. Fou31.56Hz), nd: C, 59.91; H, 4.33; N, 5.99.

Table 3, entry 8

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}$, $J=7.48,7.24 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.92 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=7.16,6.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ $(\mathrm{s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{brs}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $152.1,146.8,142.1,139.2,129.5,119.3,111.0,110.5,107.2,85.7,41.7$ ppm. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{INO}: \mathrm{C}, 44.17$; H, 3.37; N, 4.68. Found: C, $44.30 ; \mathrm{H}, 3.51$; N, 4.82.

Table 3, entry 9

H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=0.96 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{brs}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J$ $=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8,151.3,142.2$, 129.2, 127.4, 112.1, 110.4, 107.5, 45.0, 40.4 ppm. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}$, 58.62; H, 6.06; N, 5.26. Found: C, 58.79; H, 6.20; N, 5.38.

Table 3, entry 10

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.50,8.22 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (t, $J=7.29,7.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{dd}, J=2.04,0.96 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ (d, $J=3.06 \mathrm{~Hz}$), $4.33(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{brs}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.9$, 147.8, 142.1, 129.4, 118.2, 113.3, 110.5, 107.1, 41.6 ppm . Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}$: C, 76.28; H, 6.40; N, 8.09. Found: C, 76.40; H, 6.59; N, 8.30.

Table 3, entry 11

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}$, $1 \mathrm{H}), 6.94-6.91$ (m, 2H), 6.34 (d, $J=4.92 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (d, $J=3.15 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (s, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5,145.3,142.1,135.1,129.1,127.9$, 127.7, 126.5, 126.2, 122.4, 118.1, 110.5, 107.3, 105.3, 41.6 ppm. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 80.69$; H, 5.87; N, 6.27. Found: C, 80.81; H, 6.05; N, 6.33.

Table 3, entry 12

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38$ ($\mathrm{s}, 1 \mathrm{H}$), 7.01 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 6.62 (d, $J=8.25$ $\mathrm{Hz}, 2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 2,26(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.1,145.5,142.0,129.8,127.4,113.5,110.4,107.0,41.9$, 20.5 ppm. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 76.98 ; \mathrm{H}, 7.00 ; \mathrm{N}, 7.48$. Found: C, 77.12; H, 7.15; N, 7.63.

Table 3, entry 13

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=5.04 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.26$ $\mathrm{Hz}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz ,
CDCl_{3}): $\delta 153.0,152.4,141.8,141.7,114.7,114.5,110.3,106.8,55.5,42.2 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 70.92; H, 6.45; N, 6.89. Found: C, $71.10 ; \mathrm{H}, 6.59 ; \mathrm{N}, 7.01$.

Table 3, entry 14

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.22 \mathrm{~Hz}$, $2 \mathrm{H}), 6.76(\mathrm{t}, J=7.26 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=2.76 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.01$ (s, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.3,149.4,141.8,129.1,117.1,113.0$, 110.2, 107.2, 49.9, 38.3 ppm . Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 76.98 ; \mathrm{H}, 7.00 ; \mathrm{N}, 7.48$. Found: C, 77.11; H, 7.16; N, 7.59.

