Supporting Information Transformation of Lignin Model Compounds to N-substituted

Aromatics via Beckmann Rearrangement

Yinling Wang, Yiman Du, Jianghua He,* and Yuetao Zhang*

State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University, Changchun, Jilin 130012, China

^{*} Corresponding author. E-mails: <u>hjh2015@jlu.edu.cn</u>, ytzhang2009@jlu.edu.cn

Table of Contents

I.	General Information	S3
II.	General procedures	S3
1.	General procedure for the synthesis of lignin ^{oxime}	S3
2.	General procedure for the BR reaction of lignin ^{oximes}	S5
3.	General procedure for hydrolysis of lignin ^{BR}	S7
4.	General procedure for one-pot process of BR reaction and hydrolysis	S7
III.	Molecular Structure and X-Ray Data of compound Z-F ^{oxime}	S8
III.	HPLC Analysis	S11
IV.	References	S13
V.	NMR Spectra	S14

I. General Information

All syntheses and manipulations of air- and moisture-sensitive materials were carried out in flamed Schlenk-type glassware on a dual-manifold Schlenk line, a high-vacuum line, or an argon-filled glove box. NMR spectra were recorded on a Bruker Avance II 500 (500 MHz, ¹H; 126 MHz, ¹³C) instrument at room temperature. Chemical shifts for ¹H and ¹³C spectra were referenced to internal solvent resonances and were reported as parts per million relative to SiMe₄.

2-Bromoacetophenone, guaiacol, diisopropylamine, n-BuLi (1.6 M solution in hexane), 3,4dimethoxybenzaldehyde, 2-bromo-4'-methoxyacetophenone, and the standard substances benzonitrile (**aa1**), 4-methoxybenzonitrile (**aa2**), 3,4-dimethoxybenzonitrile (**aa3**), benzamide (**ab1**), and 4-methoxybenzamide (**ab2**), aniline (**ac1**), 4-methoxyaniline (**ac2**), 3,4dimethoxyaniline (**ac3**), phenol (**ba1**), 2-methoxyphenol (**ba2**), 2-phenoxyacetic acid, and 2-(2-methoxyphenoxy)acetic acid were purchased from J&K. NH₂OH·HCl, NaOAc·3H₂O, 4acetamido-TEMPO, ethyl (2-methoxyphenoxy)acetate, sodium borohydride, inorganic salts and solvents were purchased from Titan. All of chemicals were used as received unless otherwise specified as follows. THF were dried over sodium/potassium alloy distilled under nitrogen atmosphere prior to use for the synthesis of lignin model compound \mathbf{F}^{ox} . The oxidized lignin model compounds \mathbf{A}^{ox} , ¹ \mathbf{B}^{ox} , ¹ \mathbf{C}^{ox} , ¹ \mathbf{D}^{ox} , ¹ \mathbf{E}^{ox} , ² and \mathbf{F}^{ox} ³ were prepared according to a literature procedure.

Reactions were monitored by thin layer chromatography (TLC) visualizing with ultraviolet light (UV); column chromatography purifications were carried out using silica gel. The reaction mixture was analyzed referred to the standard curves of standards using Waters make High Performance Liquid Chromatograph (HPLC) system equipped with autosampler, C18 column (Length: 150mm, Internal diameter: 4.6mm, 35 °C) and UV/Vis detector ($\lambda = 220$ nm). CH₃OH: H₂O (45:55 or 25:75) was used as a mobile phase with a flow rate of 1.0 mL/min. Mass spectras were recorded on the Bruker MicroTOF Q II.

II. General procedures

1. General procedure for the synthesis of lignin^{oxime}

To a solution of lignin model compounds (10 mmol) in EtOH:H₂O (1:3, 80 mL) was added NH₂OH·HCl (15 mmol, 1.5 eq.), NaOAc·3H₂O (25 mmol, 2.5 eq.) at room temperature. The mixture was heated to reflux. After the reaction, the mixture was extracted with ethyl acetate for three times and washed with saturated brine. The organic phase was dried by anhydrous MgSO₄. The solvent was removed under reduced pressure. The product was purified on silica gel with EtOAc: petroleum ether to provide a mixture of *Z* and *E* isomers.

MeO MeO	O OMe 1.5 eq. NH ₂ OH•HCl n eq.base solvent, reflux, 12 h	HO _N MeO MeO <i>E</i> -lignin ^{oxime}	OMe + MeO MeO	Z-lignin ^o	OH OMe
Entry	Base n eq.	Solvent	Conv. ^b	Selct	ivity ^b
_			(%)	Ζ	Е
1	NaOAc·3H ₂ O 1.1	H ₂ O	7	46	54
2	NaOAc·3H ₂ O 1.1	H ₂ O:EtOH=3:1	97	42	58

Table S1. Optimization for the synthesis of lignin^{oxime a}

3	NaOAc·3H ₂ O 1.1	$H_2O:EtOH=1:1$	90	49	51
4	NaOAc \cdot 3H ₂ O 1.1	EtOH	87	50	50
5	NaOAc·3H ₂ O 1.5	H ₂ O:EtOH=3:1	92	55	45
6	NaOAc·3H ₂ O 3.0	H ₂ O:EtOH=3:1	>99	51	49
7	NaOAc·3H ₂ O 5.0	H ₂ O:EtOH=3:1	62	52	48
8	NaOAc·3H ₂ O 3.0	EtOH:Tol=1:3	88	62	38
9	NaOAc·3H ₂ O 3.0	EtOH:1,4-dioxide=1:3	59	56	44
10	NaOAc·3H ₂ O 3.0	EtOH:CHCl ₃ =1:3	66	61	39
11	Et ₃ N 3.0	EtOH:H ₂ O=1:3	75	56	44
12	Et ₃ N 3.0	Tol	0	-	-

^{*a*}Condition: substrate (0.1 mmol, 1 eq.), NH₂OH·HCl (n eq.), base (n eq.), and 0.8 ml solvent, reflux, 12 h. ^{*b*}The conversion and seletivity were measured by ¹H NMR.

2-phenoxy-1-phenylethan-1-one oxime (A^{oxime}): white solid. ¹H NMR (500 MHz, DMSO- d_6) NOH δ 11.92 (s, 3H, -OH), 11.42 (s, 1H, -OH), 7.68 – 7.65 (m, 9H, -Ar), 7.43 – 7.34 (m, 13H, -Ar), 7.28 – 7.25 (m, 9H, -Ar), 6.98 – 6.92 (m, 13H, -Ar), 5.26 (s, 7H, -CH₂), 4.96 (s, 2H -CH₂). ¹³C NMR (126 MHz, DMSO- d_6) δ 158.1, 157.9, 152.9, 151.0, 134.3, 131.8, 129.5, 129.5, 128.8, 128.6, 128.3, 128.0, 126.4, 120.9, 114.9, 114.3, 69.2, 58.6. HRMS (ESI) calculated for C₁₄H₁₄NO₂ [M + H]⁺ 228.1019, found 228.0993.

2-(2-methoxyphenoxy)-1-phenylethan-1-one oxime (B^{oxime}): white solid. ¹H NMR (500 MHz, NOH OME DMSO- d_6) δ 11.86 (s, 3H, -OH), 11.39 (s, 1H, -OH), 7.71 – 7.68 (m, 8H, - *Ar*), 7.43 – 7.34 (m, 12H, -*Ar*), 7.05 – 7.03 (m, 4H, -*Ar*), 6.95 – 6.85 (m, 12H, -*Ar*), 5.22 (s, 6H, -CH₂), 4.92 (s, 2H, -CH₂), 3.66 (s, 12H, -OCH₃). ¹³C NMR (126 MHz, DMSO- d_6) δ 152.9, 151.1, 149.4, 149.2, 147.6, 147.6, 134.4, 131.9, 128.8, 128.7, 128.2, 127.9, 126.4, 121.7, 121.5, 120.7, 120.7, 114.8, 113.5, 112.6, 112.5, 70.3, 59.4, 55.5. HRMS (ESI) calculated for C₁₅H₁₆NO₃ [M + H]⁺ 258.1125, found 258.1090.

1-(4-methoxyphenyl)-2-phenoxyethan-1-one oxime (**C**^{oxime}): white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.70 (s, 5H, -OH), 11.36 (s, 1H, -OH), 7.75 – 7.72 (m, 2H, -*Ar*), 7.63 – 7.60 (m, 10H, -*Ar*), 7.29 – 7.24 (m, 13H, -*Ar*), 6.98 – 6.91 (m, 32H, -*Ar*), 5.23 (s, 10H, -CH₂), 4.94 (s, 2H, -CH₂), 3.77 (s, 3H, -OCH₃), 3.75 (s, 14H, -OCH₃). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 159.8, 159.5, 158.1, 157.9, 152.4, 150.1, 130.5, 129.5, 129.4, 127.7, 126.7, 123.8, 120.9, 114.9, 114.3, 113.7, 113.3, 69.2,

152.4, 150.1, 130.5, 129.5, 129.4, 127.7, 126.7, 123.8, 120.9, 114.9, 114.3, 113.7, 113.3, 69.2, 58.5, 55.1. HRMS (ESI) calculated for $C_{15}H_{16}NO_3$ [M + H]⁺ 258.1125, found 258.1090.

2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethan-1-one oxime (D^{oxime}): white solid. ¹H NOH OME NMR (500 MHz, DMSO- d_6) δ 11.64 (s, 3H, -OH), 11.34 (s, 1H, -OH), 7.77 (d, J = 8.5 Hz, 2H, -*Ar*), 7.64 (d, J = 8.5 Hz, 7H, -*Ar*), 7.05 – 7.03 (m, 5H, -*Ar*), 6.98 – 6.85 (m, 22H, -*Ar*), 5.18 (s, 7H, -CH₂), 4.90 (s, 2H, -CH₂), 3.78 (s, 4H, -OCH₃), 3.76 (s, 9H, -OCH₃), 3.68 (s, 12H, -OCH₃). ¹³C NMR (126 MHz, DMSO- d_6) δ 159.8, 159.5, 152.4, 150.1, 149.4, 149.1, 147.6, 130.6, 127.7, 126.9, 123.9, 121.6, 121.5, 120.7, 120.7, 114.7, 113.7, 113.4, 113.3, 112.5, 112.4, 70.4, 59.3, 55.5, 55.1. HRMS (ESI) calculated for C₁₆H₁₈NO₄ [M + H]⁺ 288.1231, found 288.1195.

1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one oxime (F^{oxime}):

white solid. ¹H NMR (500 MHz, DMSO- d_6) δ 11.70 (s, 1H, -NOH), 11.07 (s, 1H, -NOH), 7.34 (d, J = 2.0 Hz, 1H, -Ar), 7.30 (dd, J = 8.5, 2.0 Hz, 1H, -Ar), 7.12 (dd, J = 8.0, 2.0 Hz, 1H, -Ar), 7.03 – 6.76 (m, 11H, -Ar), 5.88 (dd, J = 7.5, 3.5 Hz, 1H, -CH), 5.19 (t, J = 5.8 Hz, 1H,

-CH₂OH), 5.02 (t, J = 6.5 Hz, 1H, -CH), 4.97 (t, J = 5.8 Hz, 1H, -CH₂OH), 3.97 (dt, J = 12.5, 6.5 Hz, 1H, -CH₂OH), 3.76 (s, 3H, -OCH₃), 3.75 – 3.71 (m, 9H, -OCH₃), 3.70 (s, 3H, -OCH₃), 3.67 (s, 3H, -OCH₃), 3.57 (dt, J = 11.5, 6.0 Hz, 1H, -CH₂OH). ¹³C NMR (126 MHz, DMSO- d_6) δ 154.2, 152.2, 149.6, 149.3, 148.9, 148.8, 147.8, 147.8, 146.9, 126.1, 123.7, 121.6, 121.5, 121.1, 120.6, 120.5, 120.1, 115.4, 112.7, 112.5, 112.4, 112.1, 111.0, 111.0, 110.8, 81.1, 73.6, 61.8, 61.7, 55.5, 55.4, 55.4, 55.4, 55.3, 55.2. HRMS (ESI) calculated for C₁₈H₂₂NO₆ [M + H]⁺ 348.1442, found 348.1436.

2. General procedure for the BR reaction of lignin^{oximes}

A mixture of Z and E lignin^{oxime} (0.1 mmol) was added to a 5 mL round bottom flask equipped with a magnetic stirring bar. A solution of $SOCl_2$ (0.5 eq.) in dry CH₃CN 0.5ml was subsequently added dropwise at 80°C with a syringe. The mixture was stirred for 2 min at 80°C. After the reaction, it was quenched by saturated sodium bicarbonate solution. Using acetonitrile, the mixture was dissolved to constant volume in a 25 mL volumetric flask and then filtered. The filtrate was measured by HPLC.

Table S2. Optimization for BR reaction of lignin^{oximes a}

	ABR	Backman R	Rearrangem eaction	aa	h ba	H H N	ca
•	Entry	Co	onditions		Products	and yiel	ds ^b (%)
		SOCl ₂ (eq.)	T (°C)	t (min)	aa	ba	ca
	1	SOCl ₂ 0.5	25	2	15	15	47
	2	SOC1 ₂ 0.5	40	2	21	17	53
	3	SOCl ₂ 0.5	60	2	30	28	53
	4	SOCl₂ 0.5	80	2	33	27	63
	5	SOCl ₂ 0.3	80	10	36	47	31
	6	SOCl ₂ 0.1	80	10	17	22	12
	7	PCl ₅ 0.5	80	2	31	27	44

^a Optimization reactions were performed on a 0.1 mmol scale. ^bThe yields measured by HPLC.

2-phenoxy-N-phenylacetamide (A^{BR}): white solid. ¹H NMR (500 MHz, Chloroform-d) δ 8.29 (s,

1H, -N*H*CO), 7.60 (d, J = 8.0 Hz, 2H, -Ar), 7.36 (t, J = 7.5 Hz, 4H, -Ar), 7.16 (t, J = 7.5 Hz, 1H, -Ar), 7.07 (t, J = 7.5 Hz, 1H, -Ar), 7.00 (d, J = 8.0 Hz, 2H, -Ar), 4.62 (s, 2H, -CH₂). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 157.1, 137.0,

130.0, 129.2, 125.0, 122.6, 120.2, 115.0, 67.8. HRMS (ESI) calculated for $C_{14}H_{14}NO_2$ [M + H]⁺ 228.1019, found 228.0993.

2-(2-methoxyphenoxy)-N-phenylacetamide (\mathbf{B}^{BR}): white solid. ¹H NMR (500 MHz, Chloroformd) δ 8.96 (s, 1H, -NHCO), 7.61 (d, J = 8.5 Hz, 2H, -Ar), 7.36 (t, J = 8.0 Hz, 2H, -Ar), 7.14 (t, J = 7.3 Hz, 1H, -Ar), 7.10 – 7.07 (m, 1H, -Ar), 7.00 (dd, J = 8.0, 1.5 Hz, 1H, -Ar), 7.00 – 6.96 (m, 2H, -Ar), 4.66 (s, 2H, - CH_2), 3.94 (s, 2H, -Ar), 4.66 (s, 2H, -Ar), 4.67 (s, 2H, -Ar), 4.67 (

3H, -OC*H*₃). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 150.0, 147.4, 137.4, 129.2, 124.7, 123.8, 121.5, 119.9, 116.8, 112.3, 70.7, 56.0. HRMS (ESI) calculated for C₁₅H₁₆NO₃ [M + H]⁺ 258.1125, found 258.1090.

N-(4-methoxyphenyl)-2-phenoxyacetamide (C^{BR}): white solid. ¹H NMR (500 MHz, Chloroformd) δ 8.21 (s, 1H, -NHCO), 7.49 (d, J = 8.0 Hz, 2H, -Ar), 7.35 (t, J = 7.5 Hz, 2H, -Ar), 7.06 (t, J = 7.0 Hz, 1H, -Ar), 6.99 (d, J = 7.5 Hz, 2H, -Ar), 6.89 (d, J = 7.5 Hz, 2H, -Ar), 4.60 (s, 2H, - CH_2), 3.80 (s, 3H, -OCH₃). ¹³C

NMR (126 MHz, CDCl₃) δ 166.2, 157.1, 156. 9, 130.0, 122.5, 122.1, 114.9, 114.3, 67.8, 55.6. HRMS (ESI) calculated for C₁₅H₁₆NO₃ [M + H]⁺ 258.1125, found 258.1090.

2-(2-methoxyphenoxy)-N-(4-methoxyphenyl) acetamide (D^{BR}): white solid. ¹H NMR (500 MHz, MeO
Chloroform-*d*) δ 8.82 (s, 1H, -N*H*CO), 7.52 – 7.48 (m, 2H, -*Ar*), 7.07 – 7.04 (m, 1H, -*Ar*), 7.01 – 6.98 (m, 1H, -*Ar*), 6.97 – 6.93 (m, 2H, -*Ar*), 6.90 – 6.87 (m, 2H, -*Ar*), 4.65 (s, 2H, -*CH*₂), 3.94 (s, 3H, -OC*H*₃), 3.80 (s, 3H, -OC*H*₃). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 156.7, 150.0, 147.5, 130.5, 123.7, 121.7, 121.5, 116.7, 114.3, 112.3, 70.6, 56.1, 55.6. HRMS (ESI) calculated for C₁₆H₁₈NO₄ [M + H]⁺ 288.1231, found 288.1195.

N-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy) acetamide (E^{BR}): white solid. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.86 (s, 1H, -NHCO), 7.43 (d, *J* = 2.0 Hz, 1H, -*Ar*), 7.09 (t, *J* = 7.5 Hz, 1H, -*Ar*), 7.03 (d, *J* = 7.5 Hz, 1H, -*Ar*), 7.00 – 6.96 (m, 2.0H, -*Ar*), 6.86 (d, *J* = 8.5 Hz, 1H, -*Ar*), 4.67 (s, 2H, -CH₂), 3.97 (s, 3H, -OCH₃), 3.92 (s, 3H, -OCH₃), 3.89 (s, 3H, -OCH₃). ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 150.0, 149.3, 147.50, 146.2, 131.0, 123.8, 121.6, 116.9, 112.3, 112.0, 111.5, 105.0, 70.8, 56.3, 56.1, 56.1. HRMS (ESI) calculated for C₁₇H₂₀NO₅ [M + H]⁺ 318.1336, found 318.1329.

N-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy) propanamide (\mathbf{F}^{BR}): white solid. ^{HO} ^H 111.8, 111.5, 104.7, 83.8, 63.3, 56.3, 56.1, 56.1. HRMS (ESI) calculated for $C_{18}H_{22}NO_6$ [M + H]⁺ 348.1442, found 348.1436.

2-(3,4-dimethoxyphenyl) oxazole (aa3'): slight yellow solid. ¹H NMR (500 MHz, MeO N Chloroform-*d*) $\delta = 7.67$ (s, 1H, -OCHCHN), 7.63 (dd, *J*=8.5, 2.0, 1H, -*Ar*), 7.58 (d, *J*=2.0, 1H, -*Ar*), 7.20 (s, 1H, -OCHCHN), 6.94 (d, *J*=8.5, 1H, -*Ar*), 3.97 (s, 3H, -OCH₃), 3.94 (s, 3H, -OCH₃). ¹³C NMR (126 MHz, CDCl₃) $\delta =$ 162.1, 151.1, 149.3, 138.3, 128.3, 120.6, 119.7, 111.2, 109.3, 56.2, 56.1. HRMS (ESI) calculated for C₁₁H₁₂NO₃ [M + H]⁺ 206.0812, found 206.0835.

3. General procedure for hydrolysis of lignin^{BR}

Phenoxyacetanilide ($A^{BR} \sim F^{BR}$) (0.1 mmol) was added to a 5 mL round bottom flask equipped with a magnetic stirring bar. And then 2M NaOH aq. (0.5 ml) and EtOH 0.5 ml were subsequently added with a syringe. The mixture was stirred for 30 min at 80 °C. After the reaction, using acetonitrile, the mixture was dissolved to constant volume in a 25 mL volumetric flask and then filtered. The filtrate was measured by HPLC.

3,4-dimethoxybenzamide (ab3): white solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.94 (s, 1H, -CON*H*₂), 7.51 (d, *J* = 8.5 Hz, 1H, -*Ar*), 7.49 (s, 1H, -*Ar*), 7.18 (s, 1H, -MeO NH₂ NH₂ CON*H*₂), 6.98 (d, *J* = 8.5 Hz, 1H, -*Ar*), 3.79 (s, 6H, -OC*H*₃). ¹³C NMR (126 MHz, DMSO) δ 167.5, 151.2, 148.1, 126.6, 120.8, 111.0, 110.8, 55.6, 55.6. HRMS (ESI) calculated for C₉H₁₂NO₃ [M + H]⁺ 182.0812, found 182.0821.

sodium 3-hydroxy-2-(2-methoxyphenoxy) propanoate (bb3): white solid. ¹H NMR (500 MHz, O^{Me} O^{O}_{ONa} Deuterium Oxide) δ 7.04 (d, J = 8.0 Hz, 1H, -Ar), 6.97 (t, J = 7.8 Hz, 1H, -Ar), O^{O}_{OH} $O^{O}_{$

4. General procedure for one-pot process of BR reaction and hydrolysis

A mixture of Z- and E-lignin^{oxime} (0.1 mmol) was added to a 5 mL round bottom flask equipped with a magnetic stirring bar. A solution of SOCl₂ (0.5 eq.) in dry CH₃CN 0.5ml was subsequently added dropwise with a syringe at 80 °C. The mixture was stirred for 2 min at 80 °C. And then 2M NaOH aq. (0.5 ml) and EtOH 0.5 ml were subsequently added with a syringe. The mixture was continued to stir for 2 h at 80 °C. After the reaction, the mixture was dissolved in acetonitrile to constant volume in a 25 mL volumetric flask and then filtered. The filtrate was measured by HPLC.

Table S3. One-pot process of BR reaction and hydrolysis of A^{oxime a}

Entry	Step 2 condition	Products and yields b (%)		Total Cleavage				
		aa1	ab1	ac1	ba1	bb1	A ^{BR}	Yield of N (%) ^c
1	2M NaOH aq. 0.5 ml, EtOH 0.5 ml, 80°C, 2 h	7	25	64	28	59	4	96
2	2M NaOH aq. 0.5 ml, EtOH 0.5 ml, 80°C, 5 h	7	26	62	28	58	5	95
3	2M NaOH aq. 0.5 ml, EtOH 0.5 ml, 100°C, 2 h	2	28	18	20	20	5	48
4	2M NaOH aq. 1.0 ml, EtOH 0.5 ml, 80°C, 2 h	7	25	60	29	56	5	92
5	2M NaOH aq. 0.5 ml, 80°C, 2 h	2	23	44	29	54	8	69

^{*a*} step 1 condition: substrate (0.1 mmol, 1.0 eq.), SOCl₂ (0.02 mmol, 0.5 eq.), dry CH₃CN 0.5 ml, at 80 °C, 2 min. ^{*b*} The yields measured by HPLC. ^{*c*} Total cleavage yield of N was presented as the amount of (aa1 + ab1 + ac1) in Products and yields.

Scheme S1. Hydrolysis of benzonitrile (aa1)

III. Molecular Structure and X-Ray Data of compound Z-F^{oxime}

Single crystal **Z**-**F**^{oxime} suitable for an X-ray diffraction experiment was prepared from the slow evaporation of a saturated dichloromethane/hexane solution of mixture of E/Z-F^{oxime}, after it was stored at room temperature for one week.

Single crystals were quickly covered with a layer of Paratone-N oil (Exxon, dried and degassed at 120 °C/10⁻⁶ Torr for 24 h) after decanting the mother liquor. A crystal was then mounted on a thin glass fiber and transferred into the cold nitrogen stream of a Bruker APEX-II CCD diffractometer. The structures were solved by direct methods and refined using the Bruker SHELXTL program library by full-matrix least squares on F^2 for all reflections (*SHELXTL*, Version 6.12; Bruker Analytical X-ray Solutions: Madison, WI, 2001). The structure was refined by full-matrix least-squares on F^2 for all reflections. All non-hydrogen atoms were refined with anisotropic displacement parameters, whereas hydrogen atoms were included in the structure factor calculations at idealized positions (Sheldrick, G. M. Acta Crystallogr, Sect. A. **1990**, 46, 467–473 & **2008**, 64, 112–122.).

Figure S1. X-ray crystal structure of **Z-lignin**^{oxime}. Hydrogen atoms were deleted for clarity and ellipsoids were drawn at 50% probability, (CCDC# 1831464).

Compound	Z-F ^{oxime}
empirical formula	$C_{18}H_{21}NO_{6}$
MW	347.36
wavelength, Å	0.71073
crystal system	Triclinic
space group	<i>P</i> -1
<i>a</i> , Å	8.9121(4)
b, Å	10.6028(6
<i>c</i> , Å	10.6070(6)
α , deg	10.6070(6)
β , deg	95.433(2)
γ, deg	76.473(3)
V, Å ³	875.81(8)
Ζ	2

Table S4. Crystal data and structure refinement for compound Z-F^{oxime}.

D_{calc} , g cm ⁻³	1.317
μ , mm ⁻¹	0.099
F(000)	368
crystal size, mm	0.24×0.20×0.18
θ range, deg	2.87-28.28
limiting indices	-11≤h≤11
	<i>−</i> 14 <i>≤k≤</i> 14
	<i>−</i> 14 <i>≤l</i> ≤14
reflns collected	18241
independent reflns	4328
	[R(int) = 0.0247]
absorption correction	None
data/restraints/para's	4328 / 0 / 231
goodness-of-fit on F^2	1.017
final R indices	R1 = 0.0476
$[I > 2\sigma(I)]^{[a]}$	wR2 = 0.1139
<i>R</i> indices (all data) ^[a]	R1 = 0.0617;
	wR2 = 0.1232
peak _{max} /hole _{min} (e Å ⁻³)	0.254 / -0.205
[a] $R1 = \sum F_o - F_c / \sum F_o ; v$	$vR2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}$

Table S5. Bond lengths [A] and angles [deg] for Z-F^{oxime}.

C(1)-C(6)	1.384(2)	C(9)-O(4)	1.4310(17)
C(1)-C(2)	1.399(2)	C(10)-O(5)	1.3749(16)
C(1)-C(7)	1.4825(18)	C(10)-C(15)	1.382(2)
C(2)-C(3)	1.377(2)	C(10)-C(11)	1.4066(19)
C(3)-O(1)	1.364(2)	C(11)-O(6)	1.3631(18)
C(3)-C(4)	1.401(3)	C(11)-C(12)	1.381(2)
C(4)-O(2)	1.3685(19)	C(12)-C(13)	1.389(3)
C(4)-C(5)	1.375(3)	C(13)-C(14)	1.370(3)
C(5)-C(6)	1.393(2)	C(14)-C(15)	1.394(2)
C(7)-N(1)	1.2846(17)	C(16)-O(6)	1.4319(18)
C(7)-C(8)	1.5234(19)	C(17)-O(1)	1.405(3)
C(8)-O(5)	1.4377(15)	C(18)-O(2)	1.417(3)
C(8)-C(9)	1.5149(18)	N(1)-O(3)	1.4041(16)
C(6)-C(1)-C(2)	118.31(13)	C(3)-C(2)-C(1)	121.29(15)
C(6)-C(1)-C(7)	122.72(13)	O(1)-C(3)-C(2)	124.44(17)
C(2)-C(1)-C(7)	118.96(12)	O(1)-C(3)-C(4)	115.71(15)

C(2)-C(3)-C(4)	119.85(15)	O(5)-C(10)-C(11)	114.78(12)
O(2)-C(4)-C(5)	125.33(16)	C(15)-C(10)-C(11)	119.78(13)
O(2)-C(4)-C(3)	115.54(16)	O(6)-C(11)-C(12)	125.41(14)
C(5)-C(4)-C(3)	119.14(14)	O(6)-C(11)-C(10)	114.98(12)
C(4)-C(5)-C(6)	120.78(15)	C(12)-C(11)-C(10)	119.61(14)
C(1)-C(6)-C(5)	120.59(15)	C(11)-C(12)-C(13)	120.08(15)
N(1)-C(7)-C(1)	116.45(12)	C(14)-C(13)-C(12)	120.41(15)
N(1)-C(7)-C(8)	121.23(12)	C(13)-C(14)-C(15)	120.27(16)
C(1)-C(7)-C(8)	122.30(11)	C(10)-C(15)-C(14)	119.84(15)
O(5)-C(8)-C(9)	108.29(10)	C(7)-N(1)-O(3)	110.89(11)
O(5)-C(8)-C(7)	112.15(10)	C(3)-O(1)-C(17)	117.16(16)
C(9)-C(8)-C(7)	111.97(11)	C(4)-O(2)-C(18)	117.37(17)
O(4)-C(9)-C(8)	108.68(11)	C(10)-O(5)-C(8)	116.66(10)
O(5)-C(10)-C(15)	125.44(13)	C(11)-O(6)-C(16)	117.83(12)

III. HPLC Analysis

All products were quantified by HPLC with standard curve of standards as reference. Some typical standard curves and chromatograms are shown as below.

1. HPLC Standard Curve

All standard curves had a linear relationship of $R^2 = 0.999$.

Figure S2. HPLC standard curve of benzonitrile (aa)

2. HPLC Chromatogram

Some typical HPLC chromatograms are shown as below.

Figure S3. HPLC chromatogram of BR reaction of A^{oxime} (entry 1, Table 2).

Figure S4. HPLC chromatogram of the hydrolysis of amides A^{BR} (entry 1, Table 3).

Figure S5. HPLC chromatogram of one-pot process of BR reaction and hydrolysis of **A**^{oxime} (entry 1, Table 4).

IV. References

- J. M. Nichols, L. M. Bishop, R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2010, 132, 12554–12555.
- (2) D. W. Cho, R. Parthasarathi, A. S. Pimentel, G. D. Maestas, H. J. Park, U. C. Yoon, D. Dunaway-Mariano, S. Gnanakaran, P. Langan and P. S. Mariano, *J. Org. Chem.*, 2010, 75, 6549–6562.
- (3) A. Rahimi, A. Azarpira, H. Kim, J. Ralph and S. S. Stahl, J. Am. Chem. Soc., 2013, **135**, 6415–64

¹³C NMR spectrum of 2-phenoxy-1-phenylethan-1-one oxime (A^{oxime}) (DMSO-d₆, 126 MHz)

¹H NMR spectrum of 2-(2-methoxyphenoxy)-1-phenylethan-1-one oxime (**B**^{oxime}) (DMSO-*d*₆, 500 MHz)

 $^{13}\mathrm{C}$ NMR spectrum of 2-(2-methoxyphenoxy)-1-phenylethan-1-one oxime (**B**^{oxime}) (DMSO-*d*₆, 126 MHz)

 $^{13}\mathrm{C}$ NMR spectrum of 1-(4-methoxyphenyl)-2-phenoxyethan-1-one oxime (C^{oxime}) (DMSO-*d*₆, 126 MHz)

(DMSO-*d*₆, 500 MHz)

¹H NMR spectrum of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy) ethan-1-one oxime (\mathbf{E}^{oxime}) (DMSO- d_6 , 500 MHz)

 13 C NMR spectrum of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy) ethan-1-one oxime (**E**^{oxime}) (DMSO- d_6 , 126 MHz)

¹H NMR spectrum of (E)-1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy) propan -1-one oxime ($\mathbf{F}^{\text{oxime}}$) (DMSO- d_6 , 500 MHz)

¹³C NMR spectrum of (E)-1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy) propan-1-one oxime (F^{oxime}) (DMSO-*d*₆, 126 MHz)

¹H NMR spectrum of 2-(2-methoxyphenoxy)-N-phenylacetamide (**B**^{BR}) (CDCl₃, 500 MHz)

¹³C NMR spectrum of 2-(2-methoxyphenoxy)-N-phenylacetamide (B^{BR}) (CDCl₃, 126 MHz)

¹H NMR spectrum of N-(4-methoxyphenyl)-2-phenoxyacetamide (C^{BR}) (CDCl₃, 500 MHz)

¹³C NMR spectrum of N-(4-methoxyphenyl)-2-phenoxyacetamide (CBR) (CDCl₃, 126 MHz)

¹H NMR spectrum of 2-(2-methoxyphenoxy)-N-(4-methoxyphenyl) acetamide (**D**^{BR}) (CDCl₃, 500 MHz)

¹³C NMR spectrum of 2-(2-methoxyphenoxy)-N-(4-methoxyphenyl) acetamide (**D**^{BR}) (CDCl₃, 126 MHz)

¹H NMR spectrum of N-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy) acetamide (**E**^{BR}) (CDCl₃, 500 MHz)

¹³C NMR spectrum of N-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy) acetamide (**E**^{BR}) (CDCl₃, 126 MHz)

¹H NMR spectrum of N-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy) propanamide (**F**^{BR}) (CDCl₃, 500 MHz)

¹³C NMR spectrum of N-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy) propanamide (**F**^{BR}) (CDCl₃, 126 MHz)

¹³C NMR spectrum of 2-(3,4-dimethoxyphenyl) oxazole (aa3') (CDCl₃, 126 MHz)

¹³C NMR spectrum of 3,4-dimethoxybenzamide (**ab3**) (*d*-DMSO, 126 MHz)

¹H NMR spectrum of sodium 3-hydroxy-2-(2-methoxyphenoxy) propanoate (bb3) (D₂O, 500 MHz)

