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Table S1. Lignin (Klason) contents and ALBTH lignin yields of different biomass1

ALBTH lignin yield (% on biomass)Biomass Klason lignin 
(% on biomass) 30 min 120 min

Poplar 22.2±0.4 20.7±0.2 21.0±0.2
Aspen 22.0±0.0 20.5±0.2 20.4±0.1

Eucalyptus 28.4±0.4 26.1±0.0 26.8±0.0
Douglas fir 25.9±0.0 24.0±0.2 24.4±0.3
Corn stover 12.8±0.1 13.8±0.1 14.2±0.3
Switchgrass 17.5±0.2 17.1±0.1 17.6±0.3

1. N. Li, X. Pan and J. Alexander, Green Chemistry, 2016, 18, 5367-5376.

 Note: The ALBTH reactions were conducted at 110 °C in 60% LiBr with 40 mM HCl.

Table S2. Hydrogenolysis of ALBTH and Klason lignins isolated from poplar and native lignin 
in poplar 

ALBTH lignin Klason lignin Raw poplar

Lignin oil yield (%) 96.0 29.6 93.1a

Insoluble residue yield (%) 4.3 63.7 63.3
Note: a. Lignin oil yield from raw poplar was calculated based on the lignin content in poplar (20.7%, by the 
ALBTH method). Hydrogenolysis conditions: ALBTH and Klason lignins (0.20 g each) from poplar and poplar 
powder (0.95 g, containing ~0.20 g lignin) were hydrogenolyzed using a Pd/C catalyst (0.04 g) in methanol (25 mL) 
with 40 bar H2 at 220 °C for 6 h.


