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1. Experiment methods

1.1. Chemicals

The TiO, (P25) nanoparticles were purchased from ACROS ORDANIC. H,PtCls:6H,0O
(99%), HAuCly-3H,0 (99.9%), RuCl;-xH,O (35.0-42.0%), PdCl, (59-60%), methanol
(99.5%), acetone (99.5%), acetonitrile (99%) and ethyl acetate (99.5%) were purchased
from Sinopharm Chemical Reagent Co. LTD. Dodecane (99.5%), 1-decene (95%), 1-
nonene (90%), 1-octene (99.5%), 1-heptene (99.5%), 1-hexene (99.5%), 1,9-decadiene
(98%), 4-phenyl-1-butene (98%) and 10-undecene-1-ol (99%) were purchased from

Shanghai Aladdin Biochemical Technology Co .LTD. Deionized water (18.25 MQ-cm™!)

supplied by an UP Water Purification System was used in the experimental processes.

1.2. Photocatalyst preparation

The catalysts including Pt/TiO,, Pd/TiO,, Ru/TiO, and Au/TiO, were prepared by
impregnation method. The commercial P25 (5 g) was dispersed in the deionized water
(25 mL). 6 mL H,PtClg solution (0.01 g/mL for Pt), 10 ml PdCl, solution (0.007 g/mL for
Pd), 12 ml RuCl, solution (0.008 g/mL for Ru) or 5 mL HAuCl, solution (0.01 g/mL for
Au) was added to this slurry. The mixture was stirred for 1 h at room temperature and
dried at 60 °C with vacuum drying oven for overnight. The catalyst was reduced in H,
with a gas-flow rate of 100 mL/min and at 300 °C for 180 min with the heating ramp of 1
°C min!. The temperature was dropped to room temperature in Ar (99.99%) flow, and
then the catalyst was passivated for 1 h in 1% O,/Ar (v/v) with a gas-flow rate of 10
ml/min for further usage.

1.3. Photocatalyst characterization

Transmission electron microscopy (TEM), high-resolution transmission electron
microscopy (HRTEM) were performed on a JEM-2100F microscope at an acceleration
voltage of 200 kV. The XRD patterns were performed on a Rigaku Ultima IV X-ray
powder diffractometer using Cu Ka radiation with a wavelength of 1.54056 A at 40 kV
and 40 mA. The UV-Vis spectra (DRS) were recorded on a Shimadzu DUV-3700
spectrophotometer. X-ray photoelectron spectra (XPS) were acquired on an ESCALAB
MKII with Mg Ka (hv = 1253.6 V) as the excitation source. Inductively Coupled Plasma
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(ICP) analysis of platinum, gold, palladium and ruthenium was performed using an ICP
optical emission spectrometer (Perkin Elmer).

1.4. Radical trapping study

The EPR studies were carried out in a quartz tube, and the spectra recorded on a Bruker
EPR ELEXSYS 500 spectrometer equipped with an in situ irradiation source (a Quanta-
Ray Nd: YAG laser system with A = 355 nm). Methanol or methanol-H,O solution
containing 0.1 M 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 1 mg/ml Pt/TiO, were
used for EPR experiments. All samples were made in glovebox. During the EPR
photochemical experiments, the samples were irradiated at 25 °C directly in the EPR
resonator, and the EPR spectra were recorded in situ during a continuous photoexcitation.
The operating condition was as follows: microwave frequency v = 9.51 GHz, power of
microwave W = 10.1 mW, scanning range 3330-3430 G. The g-values (2.0081+0.0001)
were determined using a built-in magnetometer. The EPR spectra obtained were analyzed
and simulated using the winsim software.

1.5. Photocatalytic evaluation

Photocatalytic reactions were carried out in a 100 mL sealed micro stainless autoclave
with 40 mm diameter sapphire window. Typically, 50 mg of solid photocatalyst was
suspended in the solution containing 50 mL methanol and 2 mL deionized water. 1-
Decene (1 mmol) and dodecane (as the internal standard) were added to the above
mixture. The reactor was filled with Ar to avoid the existence of O,. Typically, the light
source was a 300 W Xe lamp (CEL-HXUV300, Beijing Aulight) with ultraviolet (UV)
light source (200-400 nm) with intensity of 100 mW/cm?. The photocatalytic reaction

was performed at 60°C for 15 h. After the reaction, the sample was analyzed by GC-MS
(Agilent 7890A) with MS detector. The Product quantification was calculated according
to an internal standard method. Photocatalytic performance with time-on-stream was
carried out in a 200 mL quartz autoclave with 40 mm diameter window with a rubber
plug at the reactor side. After illumination, the sample was collected at different reaction
time.

Turnover number (TON) based on the target product was calculated according to:

TON x 10° = (moles of target product) / (moles of photocatalyst) x 103

Turnover frequency (TOF) based on the target product was calculated according to:
4



TOF (h") x 103 = Turnover number / Reaction time x 103
Selectivity to the target product was calculated according to:

Selectivity (%) = (moles of target product) / (moles of all products)
Anti-Markovnikov regioselectivity was calculated according to:

Anti-Markovnikov regioselectivity (%) = (moles of target product with anti-
Markovnikov regioselectivity) / (moles of products with both anti-Markovnikov and
Markovnikov regioselectivity)

The A/(A+ P) ratio was obtained according to:

A/(A+P) = (moles of alcohol product) / (moles of alcohol product + moles of
paraffin product).

Three repeat experiments were carried out under the same reaction conditions and the
relative error was typically within 5%.
1.6. Density Functional Theory Calculations

Molecular DFT calculations were performed to study the formation and reactions of
the carbon-centred radical intermediates. The Gaussian 09 program' was used with the
B3LYP exchange-correlation functional’> and the DFT-optimized DZVP2 basis set.
Molecular models were visualized by the AGUI graphical interface from the AMPAC

program 4.



2. Structure characterization of various photocatalysts
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Figure S1. Structure characterization of various photocatalysts. a, UV—Vis spectra of various
photocatalysts. The UV—Vis spectra indicated the adding of novel metals to TiO, could lead to slight
red shift. Au/TiO; exhibited a definite absorption in the range from 500-600 nm due to surface plasma
resonance (SPR) effect. b, XRD diffraction pattern. The XRD pattern revealed the diffraction peaks of
both the anatase and rutile phases of TiO,. No diffraction peaks of the noble metal particles were

observed due to the low loading content. ¢, TEM image of Pt/TiO,. d, High-resolution TEM image of

Pt/Ti0O,. Pt nanoparticles with the size of ~4 nm were observed.



3. Products analysis by GC-MS and reaction path for acetal
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Figure S2. Products analysis by GC-MS and reaction path for acetal. a, GC-MS spectra for the
products via photocatalytic coupling of 1-decene and methanol. 1:1-decene; 2: decane (byproduct); 3:
dodecane (internal standard); 4: 2-methyl-1-decanol (Markovnikov product); 5: 1-undecanol (target
product); 6: acetal compound (byproduct); other small peaks were impurities from feedstock. b,
Original mass spectrum at 14.621 min for 1-undecanol product. ¢, Standard mass spectrum of 1-
undecanol from the database. d, The reaction path for acetal as the main byproduct. Higher aliphatic
alcohol was further oxidized by h* to aldehyde, which was then converted to acetal. The mass

spectrum of other products were in Appendix diagram.



4. Effect of the reaction temperature on the catalytic performance
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Figure S3. Effect of reaction temperature on the catalytic performance. Reaction condition: 1
mmol of 1-Decene, 50 mg of photocatalyst in 50 mL of methanol. The reaction were respectively
conducted under argon atomsphere at 30 °C, 40 °C, 50 °C, 60 °C under Xe lamp irradition (200-400
nm) with light intensity of 100 mW/cm?. The reaction time was 15 h. TON and TOF were calculated
based on the target product.



5. Effect of the adding amount of water on the catalytic performance

Table S1. Effect of the adding amount of water on the -catalytic performance for
hydrofunctionalization of 1-decene with methanol. The addition of appropriate amount of water into
the reaction system (Viethanol/Vwater = 50/2 — 50/5) enhanced the catalytic activity and alcohol

selectivity while excess water would weaken the photocatalytic performance (Vpetmanol/Vwater = 50/10).

VstmVess TONAI0' TORK) 10 it AP gty 0
50:0 29.6 2.0 50.4 0.61 93
50:2 453 3.0 62.3 0.92 93
50:5 103.2 6.9 50.6 0.85 92
50:10 56.5 3.8 19.5 0.63 92




6. The area ratio of XPS peaks

Table S2. The area ratio of XPS peaks. XPS Ols spectra for the sample can be de-convoluted into
three distinct peaks: the main oxide peak at 530.3 eV (‘Ojuice’) and two additional peaks at 531.2 eV
and 532.5 eV, which were assigned to O atoms next to a defect (‘Ogeree;’) and surface hydroxyls
(‘OH’), respectively. After reaction, the peaks area ratio of Ogefect/Olatice Increased to 0.67 from 0.26.
Ti 2ps); spectra for the sample can be de-convoluted into two distinct peaks: the Ti*" peak at 459.0 eV
and Ti** peak at 457.9 eV, respectively. After reaction, the peaks area ratio of Ti**/Ti*" increased to

0.21 from 0.10.

O ls Ti2p,;
Peaks
Olamcc Odeﬁm OH Ti3+ Ti4+
Binding energy (eV) 530.3 531.2 532.5 457.9 459.0
PY/TiO, precursor 1 0.13 0.06 0.09 1
Fresh Pt/TiO, 1 0.26 0.04 0.1 1
Spent Pt/TiO, 1 0.67 0.25 0.21 1
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7. In situ electron paramagnetic resonance (EPR) study
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Figure S4. In situ electron paramagnetic resonance (EPR) study. EPR spectra in dark (black),

Intensity (a.u.)

irradiation by 355 nm light (blue) and the corresponding simulation data (red). EPR spectrum, which
can be fitted into two hyperfine splitting constants, i.e., ay = 14.9 G and ay =21.3 G, was observed in

the presence of Pt/TiO, under irradiation. The EPR spectrum could be ascribed to the DMPO-CH,OH
spin adduct, in which the interaction of the hydroxymethyl radical (-CH,OH) with neighbouring

nitrogen (Iy = 1) and hydrogen (Iy = 1/2) nuclei resulted in two hyperfine splitting constants.
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8. Proposed mechanism for photocatalytic hydrofunctionalization of olefins
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Scheme S1. Proposed mechanism for photocatalytic hydrofunctionalization of olefins.
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Appendix diagram

(1): The mass spectrum of undecan-1-ol.
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(2): The mass spectrum of decan-1-ol.
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(3): The mass spectrum of decan-1-ol.
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(4): The mass spectrum of dec-9-en-1-ol.
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(5): The mass spectrum of tridecane-1,13-diol.
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(7): The mass spectrum of dodecanenitrile.
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(9): The mass spectrum of decanenitrile.
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(11): The mass spectrum of dodecanoic acid.
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(13): The mass spectrum of decanoic acid.
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(14): The mass spectrum of nonanoic acid.
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(15): The mass spectrum of dodecan-2-one.
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(16): The mass spectrum of ethyl undecanoate
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(17): The mass spectrum of deacon-2-ol
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(18): The mass spectrum of tridecan-3-ol
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(19): The mass spectrum of 2-methyldodecan-2-ol.
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