Supporting Information

Synthesis of Dibenzothiazines from Sulfides by One-Pot N,O-Transfers and Intramolecular C-H Amination

Yan-Na Ma,[†] Chen-Yang, Guo,[†] Qianyi Zhao,[†] Jie Zhang^{*†} and Xuenian

Chen*[†]

[†]School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China

Table of contents

General methods and materials Experimental details References Characterization data The X-ray crystallographic analysis data NMR charts

General Methods and Materials

¹H and ¹³C NMR spectra were recorded on a Bruker advance III 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C) in CDCl₃ with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta = 0$ for ¹H, or to chloroform $\delta = 77.0$ for ¹³C as internal standard. ¹⁹F NMR were recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), Coupling constants, *J*, are reported in hertz. The starting materials were purchased from Aldrich, Acros Organics, J&K Chemicals Adamas-beta or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm).

Experimental Details

General procedure for the synthesis of substrates Method A

An oven-dried one-neck flask was charged with (2-bromophenyl)(methyl)sulfane (5 mmol, 1.0 equiv), PhB(OH)₂ (7.5 mmol, 1.5 equiv), S-Phos (4.8 mol %), Pd₂dba₃ (2 mol %), and K₃PO₄ (15 mmol, 3.0 equiv) in glovebox, then 25 mL of DME/H₂O (8:1) were injected into the flask, and the reaction was stirred at 80°C for 24 hours. After the reaction was completed, water was added and the organic layer was separated. The aq. layer was extracted with dichloromethane. The combined organic layers were dried over Na₂SO₄. The crude reaction mixture was purified by flash chromatography on silica gel plug to give the coupling product.^[1]

Method B

An oven-dried one-neck flask was charged with bromobenzene (5 mmol, 1.0 equiv), Pd_2dba_3 (2 mol %), S-Phos (4.8 mol %), (2-(methylthio)phenyl)boronic acid (7.5 mmol, 1.5 equiv), and K_3PO_4 (15 mmol, 3.0 equiv) in glovebox, then 25 mL of toluene were injected into the flask, and

the reaction was stirred at 100 °C for 24 hours. After the reaction was completed, water was added and the organic layer was separated. The aq. layer was extracted with dichloromethane. The combined organic layers were dried over Na₂SO₄. The crude reaction mixture was purified by flash chromatography on silica gel.^[2]

General procedure for the synthesis of benzothiazines

 $PhI(OAc)_2$ (1.5 mmol, 3.0 equiv), was added to the solution of **1a** (0.5 mmol, 1.0 equiv) and $(NH_4)_3PO_4 \cdot 3H_2O$ (0.25 mmol, 0.5 equiv) in DMF (2 mL). Then the reaction mixture was allowed to room temperature and stirred for 24 hours. After the reaction was completed, the solvent was removed under reduced pressure. The crude reaction mixture was purified by flash chromatography on silica gel to give the product **2a**.

 $PhI(OAc)_2$ (3 mmol, 6.0 equiv), was added to the solution of 5 (0.5 mmol, 1.0 equiv) and $(NH_4)_3PO_4 \cdot 3H_2O$ (0.5 mmol, 1.0 equiv) in DMF (5 mL). Then the reaction mixture was allowed to room temperature and stirred for 24 hours. After the reaction was completed, the solvent was removed under reduced pressure. The crude reaction mixture was purified by flash chromatography on silica gel to give the product 6.

 $PhI(OAc)_2$ (4.5 mmol, 9.0 equiv), was added to the solution of **9** (0.5 mmol, 1.0 equiv) and $(NH_4)_3PO_4 \cdot 3H_2O$ (0.75 mmol, 1.5 equiv) in DMF (7 mL). Then the reaction mixture was allowed to room temperature and stirred for 24 hours. After the reaction was completed, the solvent was

removed under reduced pressure. The crude reaction mixture was purified by flash chromatography on silica gel to give the product **10**.

References

- (a) H. Wang, L. Jiang, T. Chen and Y. Li, *Eur. J. Org. Chem.*, **2010**, 2324; (b) M. Tobisu, Y. Masuya, K. Baba and N. Chatani, *Chem. Sci.*, 2016, 7, 2587; (c) J. Song, L. M. Jones, G. D. K. Kumar, E. S. Conner, L. Bayeh, G. E. Chavarria, A. K. Charlton-Sevcik, S.-E. Chen, D. J. Chaplin, M. L. Trawick and K. G. Pinney, *ACS Med. Chem. Lett.*, 2012, **3**, 450.
- 2. Y.-N. Ma and S.-D. Yang, *Chem. Eur. J.* 2015, **21**, 6673.

Characterization of the Products

2a: white solid, mp 147-149 °C; 90%; ¹H NMR (400 MHz, CDCl₃) δ : 8.13 (d, J = 8.4 Hz, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.85 (d, J = 8.0 Hz, 1 H), 7.66 (t, J = 7.8 Hz, 1 H), 7.50 (t, J = 7.6 Hz, 1 H), 7.35 (t, J = 7.6 Hz, 1 H), 7.24 (d, J = 8.4 Hz, 1 H), 7.05 (t, J = 7.6 Hz, 1 H), 3.47 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.65, 133.68, 132.75, 130.52, 127.77, 124.63, 123.70, 123.66, 123.41, 120.67, 117.24, 44.43; HRMS calc. for C₁₃H₁₁NOS [M + Na]⁺, 252.0454; found, 252.0458.

2b: white solid, mp 126-128 °C; 94%; ¹**H NMR** (400 MHz, CDCl₃) δ : 8.19 (d, J = 8.0 Hz, 1 H), 7.99 (d, J = 8.0 Hz, 1 H), 7.84 (d, J = 8.0 Hz, 1 H), 7.71 (t, J = 7.8 Hz, 1 H), 7.54 (t, J = 7.6 Hz, 1 H), 7.37 (t, J = 7.6 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 7.05 (d, J = 7.6 Hz, 1 H), 3.75-3.66 (m, 1 H), 3.59-3.50 (m, 1 H), 1.21 (t, J = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 143.39, 135.01, 132.95, 130.55, 127.76, 124.75, 124.33, 123.63, 123.36, 121.53, 120.40, 116.65, 50.63, 8.47; HRMS calc. for C₁₄H₁₃NOS [M + Na]⁺, 266.0610; found, 266.0613.

2c: white solid, mp 108-110 °C; 92%; ¹H NMR (400 MHz, CDCl₃) δ: 8.16 (d, *J* = 8.4 Hz, 1 H), 7.94 (d, *J* = 8.0 Hz, 1 H), 7.85 (d, *J* = 8.0 Hz, 1 H), 7.72-7.68 (m, 1 H), 7.52 (t, *J* = 7.6 Hz, 1 H), 7.35-7.31 (m, 1 H), 7.26-7.24 (m, 1 H), 7.02-6.98 (m, 1 H), 3.76-3.66 (m, 1 H), 1.49 (d, *J* = 6.8 Hz, 3 H), 1.15 (d, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ: 144.21, 135.82, 133.11, 130.57, 127.64, 125.07, 124.74, 123.36, 123.33, 120.78, 119.99, 116.68, 57.32, 16.76, 13.73; HRMS calc. for C₁₅H₁₅NOS [M + H]⁺, 258.0947; found, 258.0948.

2d: white solid, mp 142-144 °C; 78%; ¹**H NMR** (400 MHz, CDCl₃) δ : 7.97 (d, J = 8.0 Hz, 1 H), 7.78 (d, J = 8.0 Hz, 1 H), 7.64-7.59 (m, 2 H), 7.40 (t, J = 7.6 Hz, 1 H), 7.30 (t, J = 7.6 Hz, 1 H), 7.22-7.07 (m, 6 H), 6.94 (t, J = 7.6 Hz, 1 H), 4.59-4.45 (m, 2 H); ¹³**C NMR** (100 MHz, CDCl₃) δ : 144.05, 135.70, 133.40, 130.98, 130.56, 128.58, 128.19, 127.49, 127.35, 125.60, 124.51, 123.29, 123.11, 121.41, 120.15, 116.89, 64.01; **HRMS** calc. for C₁₉H₁₅NOS [M + Na]⁺, 328.0767; found, 328.0771.

2e: white solid, mp 125-127 °C; 83%; ¹H NMR (400 MHz, CDCl₃) δ : 8.19 (d, J = 8.4 Hz, 1 H), 8.07 (d, J = 8.0 Hz, 1 H), 8.02 (d, J = 7.6 Hz, 2 H), 7.64-7.58 (m, 2 H), 7.54 (t, J = 8.0 Hz, 2 H), 7.44-7.33 (m, 4 H), 7.14-7.10 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.92, 139.31, 133.59, 133.53, 132.20, 130.48, 129.39, 129.03, 127.60, 125.63, 125.45, 125.34, 123.34, 123.26, 120.93, 117.00; HRMS calc. for C₁₈H₁₃NOS [M + H]⁺, 292.0791; found, 292.0791.

2f: white solid, mp 176-178 °C; 85%; ¹H NMR (400 MHz, CDCl₃) δ : 8.12 (d, J = 8.4 Hz, 1 H), 7.87 (d, J = 8.0 Hz, 2 H), 7.68 (t, J = 7.6 Hz, 1 H), 7.50 (t, J = 7.6 Hz, 1 H), 7.06 (s, 1 H), 6.89 (d, J = 8.4 Hz, 1 H), 3.49 (s, 3 H), 2.37 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.56, 141.02, 133.95, 132.78, 127.31, 124.80, 124.21, 123.78, 123.47, 123.30, 122.08, 114.75, 44.54, 21.34; HRMS calc. for C₁₄H₁₃NOS [M + H]⁺, 244.0791; found, 244.0793.

2g: white solid, mp 146-147 °C; 85%; ¹H NMR (400 MHz, CDCl₃) δ: 8.15 (d, *J* = 8.0 Hz, 1 H), 7.93 (d, *J* = 8.4 Hz, 1 H), 7.87 (d, *J* = 8.0 Hz, 1 H), 7.69 (t, *J* = 7.6 Hz, 1 H), 7.51 (t, *J* = 7.6 Hz, 1 H), 7.28 (s, 1 H), 7.13 (d, *J* = 8.4 Hz, 1 H), 3.52 (s, 3 H), 1.35 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ: 154.23, 142.27, 133.79, 132.78, 127.37, 124.25, 123.78, 123.52, 123.11, 121.32, 118.52, 114.61, 44.61, 34.70, 31.03; **HRMS** calc. for C₁₇H₁₉NOS [M + H]⁺, 286.1260; found, 286.1255.

2h: white solid, mp 129-132 °C; 90%; ¹⁹F NMR (376 MHz, CDCl₃) δ : -110.29; ¹H NMR (400 MHz, CDCl₃) δ : 8.08 (d, J = 8.4 Hz, 1 H), 7.96-7.92 (m, 1 H), 7.88 (d, J = 7.6 Hz, 1 H), 7.71 (t, J = 7.6 Hz, 1 H), 7.55 (t, J = 7.6 Hz, 1 H), 6.92 (dd, J = 10.4 Hz, J = 2.0 Hz, 1 H), 6.80-6.76 (m, 1 H), 3.51 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.14 (d, J = 246.9 Hz), 144.79 (d, J = 2.6 Hz), 133.44, 133.09, 127.70, 125.26 (d, J = 5.3 Hz), 123.95, 123.59, 113.89, 110.51 (d, J = 22.5 Hz), 108.68 (d, J = 22.6 Hz), 44.65; HRMS calc. for C₁₃H₁₀FNOS [M + Na]⁺, 270.0359; found, 270.0357.

2i: white solid, mp 192-194 °C; 75%; ¹H NMR (400 MHz, CDCl₃) δ : 8.12 (d, J = 8.0 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 2 H), 7.76-7.72 (m, 1 H), 7.59 (t, J = 7.2 Hz, 1 H), 7.27-7.23 (m, 1 H), 7.03 (dd, J = 8.4 Hz, J = 2.0 Hz, 1 H), 3.52 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 143.83, 136.04, 133.21, 133.14, 128.16, 124.63, 124.38, 124.25, 123.97, 123.71, 121.09, 115.88, 44.65; HRMS calc. for C₁₃H₁₀ClNOS [M + Na]⁺, 286.0064; found, 286.0070.

2j: white solid, mp 163-164 °C; 73%; ¹H NMR (400 MHz, CDCl₃) δ : 8.04 (d, J = 8.4 Hz, 1 H), 7.88-7.83 (m, 2 H), 7.67-7.63 (m, 1 H), 7.45 (t, J = 7.6 Hz, 1 H), 6.74 (d, J = 2.4 Hz, 1 H), 6.66 (dd, J = 8.8 Hz, J = 2.8 Hz, 1 H), 3.83 (s, 3 H), 3.50 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.54, 144.35, 133.94, 132.85, 126.63, 124.71, 123.80, 123.09, 123.04, 110.55, 109.55, 106.97, 55.21, 44.55; HRMS calc. for C₁₄H₁₃NO₂S [M + Na]⁺, 282.0559; found, 282.0558.

2k: white solid, mp 161-163 °C; 84%; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.98; ¹H NMR (400 MHz, CDCl₃) δ : 8.22 (d, J = 8.4 Hz, 1 H), 8.10 (d, J = 8.4 Hz, 1 H), 7.95 (d, J = 8.0 Hz, 1 H), 7.80 (t, J = 7.8 Hz, 1 H), 7.67 (t, J = 7.6 Hz, 1 H), 7.52 (s, 1 H), 7.29 (d, J = 8.4 Hz, 1H), 3.56 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.84, 133.21, 132.57, 132.20, 131.87, 129.04, 123.83 (q, J = 269.8 Hz), 124.16, 123.95, 121.85, 119.94, 116.78, 44.56; HRMS calc. for C₁₄H₁₀F₃NOS [M + H]⁺, 298.0508; found, 298.0513.

21: white solid, mp 201-202 °C; 71%; ¹H NMR (400 MHz, CDCl₃) δ: 7.77 (d, *J* = 8.0 Hz, 1 H), 7.49-7.25 (m, 8 H), 7.21 (m, 1 H), 7.19-7.13 (m, 1 H), 7.02 (d, *J* = 7.2 Hz, 1 H), 3.48 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ: 144.47, 143.29, 141.05, 133.53, 130.41, 130.33, 129.80, 128.83, 127.59, 127.16, 127.01, 124.81, 124.24, 121.32, 118.45, 41.56; HRMS calc. for C₁₉H₁₅NOS [M + Na]⁺, 328.0767; found, 328.0762.

2ma: white solid, mp 185-187 °C; 41%; ¹**H NMR** (400 MHz, CDCl₃) δ : 8.12 (d, J = 8.0 Hz, 1 H), 7.88 (d, J = 8.0 Hz, 1 H), 7.71 (t, J = 7.8 Hz, 1 H), 7.55 (t, J = 7.6 Hz, 1 H), 7.48 (d, J = 2.4 Hz, 1 H), 7.20 (d, J = 8.8 Hz, 1 H), 7.02 (dd, J = 8.8 Hz, J = 2.4 Hz, 1 H), 3.85 (s, 3 H), 3.51 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.91, 136.51, 133.46, 132.67, 127.94, 125.68, 125.12, 123.91, 123.61, 117.92, 107.55, 55.74, 44.71; **HRMS** calc. for C₁₄H₁₃NO₂S [M + Na]⁺, 282.0559; found, 282.0553.

2mb: white solid, mp 205-207 °C; 42%; ¹**H NMR** (400 MHz, CDCl₃) δ: 8.19 (d, *J* = 8.0 Hz, 1 H), 7.91 (d, *J* = 8.0 Hz, 1 H), 7.73 (t, *J* = 7.6 Hz, 1 H), 7.65 (d, *J* = 8.0 Hz, 1 H), 7.58 (t, *J* = 7.4 Hz, 1 H), 7.05 (t, *J* = 7.8 Hz, 1 H), 6.97 (d, *J* = 7.6 Hz, 1 H), 3.97 (s, 3 H), 3.64 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ: 152.70, 133.74, 132.70, 127.90, 124.86, 124.37, 123.56, 120.35, 118.22, 115.55, 111.17, 56.12, 44.31; **HRMS** calc. for C₁₄H₁₃NO₂S [M + Na]⁺, 282.0559; found, 282.0562.

2n: white solid, mp 156-158 °C; 82%; ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (d, J = 8.4 Hz, 1 H), 7.87-7.85 (m, 1 H), 7.70-7.66 (m, 1 H), 7.51 (t, J = 7.4 Hz, 1 H), 7.26 (s, 1 H), 4.02 (s, 3 H), 3.99 (s, 3 H), 3.92 (s, 3 H), 3.58 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 147.42, 146.22, 144.95, 133.24, 132.43, 131.97, 127.28, 124.54, 123.60, 123.40, 113.15, 101.65, 61.10, 61.01, 56.37, 43.87; HRMS calc. for C₁₆H₁₇NO₄S [M + Na]⁺, 342.0770; found, 342.0773.

20: white solid, mp 166-168 °C; 36%; ¹H NMR (400 MHz, CDCl₃) δ: 8.17 (d, *J* = 8.0 Hz, 1 H), 8.87 (d, *J* = 8.0 Hz, 1 H), 7.71-7.67 (m, 2 H), 7.53 (t, *J* = 7.6 Hz, 1 H), 7.13 (s, 1 H), 3.47 (s, 3 H), 2.42 (s, 3 H), 2.37 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ: 139.17, 134.37, 132.75, 132.59, 132.23, 129.12, 127.45, 124.69, 124.09, 123.58, 121.22, 116.85, 44.44, 21.00, 18.22; HRMS calc. for C₁₅H₁₅NOS [M + Na]⁺, 280.0767; found, 280.0766.

2p: white solid, mp 160-162 °C; 42%; ¹H NMR (400 MHz, CDCl₃) δ : 8.47 (d, J = 8.8 Hz, 1 H),

8.40 (d, J = 8.0 Hz, 1 H), 7.88-7.80 (m, 3 H), 3.66 (t, J = 7.8 Hz, 1 H), 7.56-7.48 (m, 2 H), 7.43-7.37 (m, 2 H), 3.39 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.51, 131.64, 131.13, 128.90, 128.70, 127.31, 126.67, 124.75, 123.71, 121.70, 114.56, 40.63; **HRMS** calc. for C₁₇H₁₃NOS [M + Na]⁺, 302.0610; found, 302.0605.

2q: white solid, mp 157-159 °C;40%; ¹H NMR (400 MHz, CDCl₃) δ : 8.88 (d, J = 8.4 Hz, 1 H), 8.37-8.36 (m, 1 H), 7.89 (d, J = 8.0 Hz, 1 H), 7.81 (t, J = 7.6 Hz, 1 H), 7.66 (t, J = 7.6 Hz, 1 H), 7.50 (d, J = 8.4 Hz, 1 H), 7.31-7.27 (m, 1 H), 3.56 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 141.93, 139.06, 135.14, 134.46, 133.16, 131.31, 129.46, 126.08, 125.36, 125.05, 123.50, 45.43; HRMS calc. for C₁₂H₁₀N₂OS [M + H]⁺, 231.0587; found, 231.0595.

2r: white solid, mp 138-140 °C; 58%; ¹H NMR (400 MHz, CDCl₃) δ: 7.85 (d, *J* = 8.0 Hz, 1 H), 7.76 (d, *J* = 8.0 Hz, 1 H), 7.66 (t, *J* = 7.6 Hz, 1 H), 7.44 (t, *J* = 7.6 Hz, 1 H), 7.29-7.26 (m, 1 H), 6.70 (d, *J* = 5.6 Hz, 1 H), 3.59 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ: 152.62, 133.22, 132.44, 126.05, 124.01, 123.22, 120.33, 119.06, 113.54, 113.52, 45.05; HRMS calc. for C₁₁H₉NOS₂ [M + Na]⁺, 258.0018; found, 258.0007.

2s: white solid, mp 175-177 °C; 41%; ¹⁹F NMR (376 MHz, CDCl₃) δ : -103.30; ¹H NMR (400 MHz, CDCl₃) δ : 7.84-7.87 (m, 2 H), 7.81 (dd, J = 10.8 Hz, J = 2.4 Hz, 1 H), 7.42-7.38 (m, 1 H), 7.29-7.23 (m, 2 H), 7.07 (t, J = 7.4 Hz, 1 H), 3.49 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.07 (d, J = 252.2 Hz), 143.14, 137.33 (d, J = 9.3 Hz), 131.42, 126.99 (d, J = 9.8 Hz), 124.89, 123.66, 120.98 (d, J = 2.8 Hz), 120.91, 116.64 (d, J = 2.5 Hz), 115.98 (d, J = 23.7 Hz), 110.04 (d, J = 23.5 Hz), 45.12; HRMS calc. for C₁₃H₁₀FNOS [M + H]⁺, 248.0540; found, 248.0536.

2t: white solid, mp 192-194 °C; 83%; ¹H NMR (600 MHz, CDCl₃) δ: 8.19 (s, 1 H), 8.02-8.01 (m, 3 H), 7.66 (t, *J* = 7.8 Hz, 1 H), 7.58 (t, *J* = 7.8 Hz, 2 H), 7.47-7.44 (m, 1 H), 7.39 (dd, *J* = 7.8 Hz, *J* = 0.6 Hz, 1 H), 7.34-7.31 (m, 2 H), 7.16-7.14 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ: 143.27, 139.01, 138.79, 135.34, 133.82, 131.24, 129.50, 129.21, 127.91, 127.15, 125.55, 123.98, 123.47, 123.25, 121.24, 116.12; HRMS calc. for C₁₃H₁₀FNOS [M + Na]⁺, 348.0220; found, 348.0227.

2u: white solid, mp 208-210 °C; 79%; ¹H NMR (400 MHz, CDCl₃) δ: 8.08 (d, *J* = 8.4 Hz, 1 H), 8.01-7.99 (m, 3 H), 7.63-7.60 (m, 1 H), 7.54 (t, *J* = 7.6 Hz, 2 H), 7.43-7.36 (m, 2 H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 1 H), 7.14-7.10 (m, 1 H), 2.47 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ: 143.19, 142.94, 139.97, 133.79, 133.39, 130.40, 129.25, 129.02, 128.85, 125.64, 125.31, 123.30, 123.09, 120.81, 116.93, 22.03; **HRMS** calc. for C₁₉H₁₅NOS [M + Na]⁺, 328.0767; found, 328.0773.

2v: white solid, mp 201-203 °C; 40%; ¹H NMR (600 MHz, CDCl₃) δ: 8.43 (s, 1 H), 8.22 (d, *J* = 5.6 Hz, 1 H), 8.11 (d, *J* = 5.2 Hz, 2 H), 7.70-7.66 (m, 3 H), 7.63-7.60 (m, 3 H), 7.53-7.45 (m, 6 H), 7.20 (t, *J* = 4.8 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ: 145.20, 143.22, 139.63, 139.50, 134.04, 133.55, 130.61, 129.41, 128.08, 128.97, 128.44, 127.38, 126.68, 126.07, 125.43, 124.26, 123.37, 121.77, 120.96, 117.08; HRMS calc. for C₂₄H₁₇NOS [M + H]⁺, 368.1104; found, 368.1106.

2w: white solid, mp 162-164 °C; 82%; ¹H NMR (600 MHz, CDCl₃) δ: 8.12-8.10 (m, 1 H), 8.06 (d,

J = 8.1 Hz, 1 H), 8.03-8.02 (m, 2 H), 7.66-7.63 (m, 1 H), 7.58-7.56 (m, 2 H), 7.46-7.45 (m, 1 H), 7.42-7.36 (m, 2 H), 7.18 (s, 1 H), 7.14-7.11 (m, 1 H), 2.32 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 142.65, 139.75, 138.10, 133.71, 133.49, 131.30, 130.10, 129.41, 129.09, 125.42, 125.28, 125.20, 123.25, 123.10, 120.89, 117.07, 21.09; **HRMS** calc. for C₁₉H₁₅NOS [M + Na]⁺, 328.0767; found, 328.0760.

2x: yellow solid, mp 200-202 °C; 24%; ¹H NMR (600 MHz, CDCl₃) δ : 8.29 (d, J = 8.4 Hz, 1 H), 8.07 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 7.74 (t, J = 7.8 Hz, 1 H), 7.39 (t, J = 7.8 Hz, 1 H), 7.29 (d, J = 7.8 Hz, 1 H), 7.09 (t, J = 7.2 Hz, 1 H), 4.00-3.96 (m, 2 H), 3.71-3.65 (m, 1 H), 3.27 (dd, J = 18.0 Hz, J = 2.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ : 190.08, 142.22, 132.45, 132.26, 131.25, 129.88, 127.30, 127.21, 125.28, 123.94, 123.70, 121.75, 118.29, 48.76, 35.31; HRMS calc. for C₁₅H₁₁NO₂S [M + Na]⁺, 292.0403; found, 292.0412.

6: white solid, 63%; mp >330 °C; ¹**H** NMR (400 MHz, CDCl₃) δ: 8.246 (d, *J* = 8.4 Hz, 1 H), 8.10 (d, *J* = 8.4 Hz, 1 H), 7.94 (d, *J* = 8.0 Hz, 1 H), 7.77 (t, *J* = 7.6 Hz, 1 H), 7.62-7.58 (m, 2 H), 3.56 (s, 3 H), 1.54 (s, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ: 142.51, 133.88, 133.04, 127.91, 124.71, 124.10, 124.01, 123.93, 122.96, 119.76, 116.77, 29.71; **HRMS** calc. for C₂₆H₂₀N₂O₂S₂ [M + Na]⁺, 479.0858; found, 479.0875.

8: white solid, mp 98-100 °C; 30%; ¹**H NMR** (400 MHz, CDCl₃) δ: 8.24 (d, *J* = 8.0 Hz, 1 H), 8.10 (d, *J* = 8.4 Hz, 1 H), 7.96-7.91 (m, 2 H), 7.84-7.82 (m, 2 H), 7.67 (t, *J* = 7.6 Hz, 1 H), 7.61 (t, *J* = 7.2 Hz, 1 H), 7.53 (s, 1 H), 7.48-7.42 (m, 2 H), 7.39 (d, *J* = 8.4 Hz, 1 H), 3.50 (s, 3 H), 3.34 (s, 3 H), 2.86-2.78 (m, 2 H), 1.99-1.89 (m, 2 H), 1.08-0.92 (m, 28 H), 0.70 (td, *J* = 6.8 Hz, *J* = 2.4 Hz, 6

H), 0.58-0.49 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ: 145.12, 143.77, 143.24, 142.02, 141.83, 139.85, 134.43, 132.88, 132.69, 127.35, 127.32, 124.46, 124.27, 124.13, 124.02, 123.82, 123.34, 116.98, 116.60, 116.64, 115.39, 112.86, 56.71, 44.69, 44.67, 44.44, 38.07, 37.99, 37.73, 31.72, 30.12, 30.05, 29.96, 29.54, 29.50, 29.45, 29.28, 29.24, 29.16, 29.15, 29.13, 24.01, 23.95, 22.50, 14.00; **HRMS** calc. for C₄₇H₆₀N₂O₂S₂ [M + Na]⁺, 771.3988; found, 771.3965.

10: white solid, mp >330 °C; 57%; ¹H NMR (400 MHz, CDCl₃) δ : 8.22 (d, J = 8.4 Hz, 1 H), 8.08 (d, J = 8.4 Hz, 1 H), 7.98 (s, 1 H), 7.96 (s, J = 7.6 Hz, 1 H), 7.73 (t, J = 7.2 Hz, 1 H), 7.65 (s, 1 H), 7.56 (t, J = 7.6 Hz, 1 H), 7.44 (dd, J = 8.0 Hz, J = 1.2 Hz, 1 H), 3.56 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 143.22, 142.97, 141.27, 133.78, 132.99, 127.87, 125.09, 124.65, 124.12, 123.99, 123.91, 123.04, 119.85, 116.65, 44.83; **HRMS** calc. for C₄₅H₃₃N₃O₃S₃ [M + Na]⁺, 782.1576; found, 782.1572.

Table S1 Crystal data and structure refinement for 2i.				
Empirical formula	C ₁₃ H ₁₀ ClNOS			
Formula weight	263.73			
Temperature/K	293(2)			
Crystal system	monoclinic			
Space group	P2 ₁ /n			
a/Å	10.4863(2)			
b/Å	9.6208(2)			
c/Å	12.3830(2)			
α/°	90			
β/°	111.484(2)			
γ/°	90			
Volume/Å ³	1162.48(4)			
Ζ	4			
$\rho_{calc}g/cm^3$	1.507			
μ/mm^{-1}	4.426			
F(000)	544.0			
Crystal size/mm ³	$0.62\times0.48\times0.45$			
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)			
2Θ range for data collection/°	9.492 to 144.782			
Index ranges	$-12 \le h \le 11, -11 \le k \le 7, -15 \le l \le 15$			
Reflections collected	6586			
Independent reflections	2269 [$R_{int} = 0.0365, R_{sigma} = 0.0349$]			
Data/restraints/parameters	2269/0/194			
Goodness-of-fit on F ²	1.155			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0454, wR_2 = 0.1406$			
Final R indexes [all data]	$R_1 = 0.0528, wR_2 = 0.1462$			
Largest diff. peak/hole / e Å ⁻³	0.23/-0.52			

CCDC 1834056

Atom	x	У	Z	U(eq)
Cl1	3202.7(7)	9521.1(7)	5606.9(7)	51.3(2)
S 1	7960.5(5)	5581.5(5)	5274.0(4)	27.6(2)
01	8957.7(16)	6603.7(18)	5223.5(15)	37.7(4)
N1	6885.2(19)	6014(2)	5786.7(16)	34.3(4)
C1	7072(2)	4956(2)	3871.8(18)	28.4(4)
C2	7611(2)	3922(3)	3378(2)	37.6(5)
C3	6898(3)	3527(3)	2248(2)	43.7(6)
C4	5664(3)	4182(3)	1616(2)	41.6(6)
C5	5138(2)	5208(3)	2105(2)	35.5(5)
C6	5823(2)	5624(2)	3268.7(19)	28.0(5)
C7	5253(2)	6663(2)	3834.1(18)	27.7(4)
C8	4148(2)	7515(3)	3192(2)	35.0(5)
С9	3534(2)	8414(3)	3719(2)	38.3(5)
C10	4009(2)	8444(2)	4925(2)	35.8(5)
C11	5103(2)	7647(2)	5593(2)	34.3(5)
C12	5765(2)	6774(2)	5056.4(18)	28.4(4)
C13	8856(3)	4209(3)	6160(2)	41.2(6)

Table S2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **2i**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
C11	47.0(4)	54.0(4)	57.6(5)	-10.0(3)	24.7(3)	9.4(3)
S 1	23.8(3)	31.5(3)	23.2(3)	1.64(17)	3.4(2)	-0.90(17)
01	30.9(8)	39.4(9)	38.0(9)	1.1(7)	7.0(7)	-9.1(7)
N1	30.3(9)	46.6(10)	22.0(9)	0.9(8)	5.0(8)	3.5(8)
C1	27.5(10)	31.5(10)	24.3(10)	-0.5(8)	7.3(8)	-4.8(8)
C2	34.3(11)	38.6(12)	38.4(13)	-3.2(10)	11.7(10)	0.9(9)
C3	50.5(14)	39.9(13)	43.7(14)	-11.5(11)	20.8(12)	-1.4(11)
C4	47.9(14)	44.8(12)	29.7(12)	-9.9(10)	11.2(11)	-9.3(11)
C5	33.7(11)	40.5(12)	26.4(11)	-2.1(9)	4.3(10)	-3.1(9)
C6	27.7(10)	30(1)	25.3(11)	0.6(7)	8.3(9)	-5.2(7)
C7	25.6(9)	30.6(10)	24.9(10)	1.4(7)	6.8(8)	-3.2(7)
C8	31.2(11)	40.6(11)	28.5(11)	2.2(9)	5.1(9)	0.9(9)
С9	30.8(10)	40.7(12)	40.0(13)	3.6(10)	8.9(10)	4.5(9)
C10	31.3(10)	36.4(11)	42.3(13)	-4.8(10)	16.7(10)	-0.6(9)
C11	33.1(11)	40.7(11)	28.5(11)	-4.0(9)	10.6(9)	-2.6(9)
C12	24.4(9)	34(1)	24.2(10)	-1.1(8)	5.9(8)	-3.1(8)
C13	39.2(13)	43.5(13)	34.9(13)	10.5(10)	6.3(11)	4.8(11)

Table S3 Anisotropic Displacement Parameters (Å²×10³) for **2i**. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S4 Bond Lengths for 2i.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C10	1.739(2)	C4	C5	1.375(4)
S 1	01	1.4534(16)	C5	C6	1.413(3)
S 1	N1	1.5401(19)	C6	C7	1.467(3)
S 1	C1	1.749(2)	C7	C8	1.404(3)
S 1	C13	1.754(3)	C7	C12	1.413(3)
N1	C12	1.398(3)	C8	С9	1.377(3)
C1	C2	1.391(3)	С9	C10	1.391(3)
C1	C6	1.403(3)	C10	C11	1.376(3)
C2	C3	1.376(4)	C11	C12	1.403(3)
C3	C4	1.394(4)			

Table S5 Bond Angles for 2i.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	S 1	N1	118.81(11)	C1	C6	C7	121.5(2)
01	S 1	C1	108.66(10)	C5	C6	C7	122.4(2)
01	S 1	C13	107.92(12)	C8	C7	C6	121.6(2)
N1	S 1	C1	107.33(10)	C8	C7	C12	118.3(2)
N1	S 1	C13	104.52(12)	C12	C7	C6	120.08(19)
C1	S 1	C13	109.29(13)	С9	C8	C7	122.0(2)
C12	N1	S 1	116.29(15)	C8	С9	C10	118.4(2)
C2	C1	S 1	121.85(17)	С9	C10	Cl1	119.17(19)
C2	C1	C6	122.9(2)	C11	C10	Cl1	119.16(19)
C6	C1	S 1	115.13(17)	C11	C10	C9	121.7(2)
C3	C2	C1	119.2(2)	C10	C11	C12	119.9(2)
C2	C3	C4	119.6(2)	N1	C12	C7	123.6(2)
C5	C4	C3	121.1(2)	N1	C12	C11	116.8(2)
C4	C5	C6	121.1(2)	C11	C12	C7	119.5(2)
C1	C6	C5	116.1(2)				

Table S6 Hydrogen Atom Coordinates (Å×10⁴) and IsotropicDisplacement Parameters (Ų×10³) for **2i**.

Atom	x	У	z	U(eq)
H2	8450(40)	3510(40)	3760(30)	65(11)
H3	7270(30)	2840(40)	1940(30)	60(10)
H4	5170(30)	3950(30)	800(30)	44(8)
H5	4330(40)	5650(30)	1620(30)	55(10)
H8	3830(30)	7500(40)	2340(30)	54(9)
H9	2810(30)	8970(40)	3280(30)	52(9)
H11	5460(30)	7620(30)	6460(30)	51(8)
H13A	9180(40)	4550(40)	6880(40)	66(12)
H13B	9580(30)	3870(30)	5850(30)	51(9)
H13C	8290(40)	3480(40)	6100(30)	59(10)

NMR charts

2a

2b

c

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

2d

2e

2f

2g

2i

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 fl (ppm)

12152017-myn 12-2

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

2mb

2n

2p

2q

2r

2s

4.5 4.0 10.5 10.0 9.5 9.0 8.5 6.5 6.0 5.5 5.0 f1 (ppm) 3.5 3.0 1.0 0.5 0.0 2.0 1.5

 $\underbrace{ < }_{76,\,68}^{77,\,32}$

 $2\mathbf{v}$

02062018-myn 60-2

 $2\mathbf{w}$

20 10 0

2x

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)