
Trihalide ionic liquids as non-volatile oxidizing solvents for metals

Arne Van den Bossche, Elise De Witte, Wim Dehaen and Koen Binnemans*

Electronic supplementary information

Chlorine reaction setup and procedure

A sealed and controllable setup for the addition of chlorine was used, a detector for chlorine gas (with a threshold of 0.5 ppm) was present inside the fume hood monitoring the chlorine level. The chlorine bottle was connected to a flow meter to control the amount of chlorine flowing through the flask. A piece of glassware was designed to bubble the chlorine flow through the IL before being washed by two washing bottles containing a 10 wt% NaOH solution. Another washing bottle containing a KI solution was attached so any remaining chlorine could be detected by a color change of the solution (when chlorine oxidizes iodide, forming the brown colored triiodide anion). This was followed by an additional washing bottle with a 10 wt% NaOH solution.

The IL was dried on a Schlenk line in a round bottom flask while stirring with a stirring bar. Afterwards, the flask was attached to the chlorine setup and nitrogen (2 bar, 20 g/h) was used to purge the system for 30 minutes.²⁸ The flask was covered with aluminum foil in order to block incident light that can cleave the halide bonds, forming reactive radicals. Then, the nitrogen flow was replaced by chlorine gas (2 bar, 2.1 g/h), which was absorbed by the IL, since no bubbles escaped the IL. After the required amount of chlorine was added, nitrogen was used again to drive all the remaining chlorine gas in the tubing into the IL. This was done for 30 minutes (2 bar, 2.1 g/h).

Pictures

Figure S 2: Reacted viscometer sample containing [P₄₄₄₁₀][Br₃] and a gold coated stainless steel ball showing signs of corrosion.

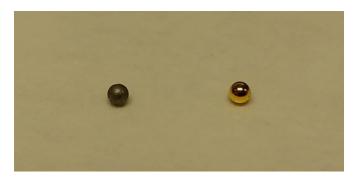


Figure S 3: Corrosion of the gold coated stainless steel ball which was left overnight (left) and an unused ball (right) for viscosity measurements.

Characterization

Monohalide ionic liquids

[P₄₄₄₁₀]Cl:

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.47 (m, 8H, 4 CH₂), 1.54 (m, 16H, 8 CH₂), 1.26 (m, 12H, 6 CH₂), 0.98 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.84-18.75 (18 CH₂), 14.05 (1 CH₃), 13.51 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 33.11. Yield: 85%, 16.18 g. Water content: 1423 ppm. Viscosity: 8167 mPa·s (25 °C). Density: 0.917 g/cm³ (25 °C).

[P₄₄₄₁₀]Br:

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.47 (m, 8H, 4 CH₂), 1.55 (m, 16H, 8 CH₂), 1.26 (m, 12H, 6 CH₂), 0.98 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.83-18.87 (18 CH₂), 14.10 (1 CH₃), 13.52 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 32.75. Yield: 44%, 9.34 g. Water content: 348 ppm. Viscosity: 7317 mPa·s (25 °C). Density: 1.006 g/cm³ (25 °C).

[P₄₄₄₁₀]I:

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.44 (m, 8H, 4 CH₂), 1.56 (m, 16H, 8 CH₂), 1.26 (m, 12H, 6 CH₂), 0.99 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.82-19.02 (18 CH₂), 14.10 (1 CH₃), 13.54 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 32.95. Yield: 82%, 19.35 g. Water content: 98 ppm. Viscosity: 5219 mPa·s (25 °C). Density: 1.090 g/cm³ (25 °C).

[P₆₆₆₁₄]Cl:

¹H NMR: (300 MHz, CDCl₃, δ /ppm): 2.47 (m, 8H, 4 CH₂), 1.51 (m, 16H, 8 CH₂), 1.26 (m, 32H, 16 CH₂), 0.89 (m, 12H, 4 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ /ppm): 31.93-29.01 (16 CH₂), 22.70-19.12 (12 CH₂), 14.13 (1 CH₃), 13.94 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ /ppm): 33.61. Yield: 42%, 4.18 g. Water content: 782 ppm. Viscosity: 2841 mPa·s (25 °C). Density: 0.890 g/cm³ (25 °C).

[N₄₄₄₁₀]Br

¹H NMR: (300 MHz, CDCl₃, δ /ppm): 3.39 (m, 8H, 4 CH₂), 1.69 (m, 8H, 4 CH₂), 1.47 (m, 8H, 4 CH₂), 1.26 (m, 12H, 6 CH₂), 1.01 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ /ppm): 59.14 (4 CH₂-N), 31.84-19.81 (14 CH₂), 14.12 (1 CH₃), 13.74 (3 CH₃). Yield: 95%, 19.23 g. Melting point: 51 °C.

$[C_{10}(P_{444})_2][(Br)_2]$

¹H NMR: (300 MHz, CDCl₃, δ /ppm): 2.55 (m, 4H, 2 CH₂), 2.44 (m, 12H, 6 CH₂), 1.55 (m, 32H, 16 CH₂), 1.37 (m, 8H, 4 CH₂), 0.98 (m, 18H, 6 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ /ppm): 30.55-28.16 (6 CH₂), 23.87 (12

CH₂), 21.69 (2 CH₂), 19.70-18.89 (8 CH₂), 13.55 (6 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 32.88 (2 PR₄). Yield: 91%, 14.14 g. Melting temperature: 75.1 °C.

Tributyldecylphosphonium trihalide ionic liquids:

$[P_{44410}][Cl_3]:$

¹H NMR: (300 MHz, CDCl₃, δ /ppm): 2.39 (m, 8H, 4 CH₂), 1.56 (m, 16H, 8 CH₂), 1.26 (m, 32H, 16 CH₂), 0.99 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ /ppm): 31.85-28.98 (16 CH₂), 24.01-18.78 (12 CH₂), 14.11 (1 CH₃), 13.51 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ /ppm): 33.07 (1 PR₄). Yield: 99%, 7.26 g. Viscosity: 400 mPa·s (25 °C). Density: 0.996 g/cm³ (25 °C).

[P₄₄₄₁₀][BrCl₂]:

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.28 (m, 8H, 4 CH₂), 1.58 (m, 16H, 8 CH₂), 1.28 (m, 12H, 6 CH₂), 1.01 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.85-18.75 (18 CH₂), 14.12 (1 CH₃), 13.49 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 33.29 (1 PR₄). Yield: 100%, 9.89 g. Viscosity: 303 mPa·s (25 °C). Density: 1.094 g/cm³ (25 °C).

[P₄₄₄₁₀][ClBr₂]:

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.29 (m, 8H, 4 CH₂), 1.59 (m, 16H, 8 CH₂), 1.28 (m, 12H, 6 CH₂), 1.01 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.86-18.86 (18 CH₂), 14.13 (1 CH₃), 13.53 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 33.01 (1 PR₄). Yield: 100%, 12.94 g. Viscosity: 376 mPa·s (25 °C). Density: 1.169 g/cm³ (25 °C).

$[P_{44410}][Br_3]:$

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.28 (m, 8H, 4 CH₂), 1.60 (m, 16H, 8 CH₂), 1.28 (m, 12H, 6 CH₂), 1.02 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.87-18.85 (18 CH₂), 14.14 (1 CH₃), 13.56 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 33.39 (1 PR₄). Yield: 100%, 11.71 g. Viscosity: 382 mPa·s (25 °C). Density: 1.253 g/cm³ (25 °C).

[P₄₄₄₁₀][IBr₂]:

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.27 (m, 8H, 4 CH₂), 1.60 (m, 16H, 8 CH₂), 1.28 (m, 12H, 6 CH₂), 1.03 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.87-19.07 (18 CH₂), 14.14 (1 CH₃), 13.57 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 33.08 (1 PR₄). Yield: 99%, 9.90 g. Viscosity: 381 mPa·s (25 °C). Density: 1.325 g/cm³ (25 °C).

[P₄₄₄₁₀][Brl₂]:

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.27 (m, 8H, 4 CH₂), 1.60 (m, 16H, 8 CH₂), 1.28 (m, 12H, 6 CH₂), 1.03 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.88-19.07 (18 CH₂), 14.16 (1 CH₃), 13.66 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 33.09 (1 PR₄). Yield: 100%, 11.74 g. Viscosity: 358 mPa·s (25 °C). Density: 1.433 g/cm³ (25 °C).

$[P_{44410}][I_3]:$

¹H NMR: (300 MHz, CDCl₃, δ/ppm): 2.27 (m, 8H, 4 CH₂), 1.62 (m, 16H, 8 CH₂), 1.29 (m, 12H, 6 CH₂), 1.04 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ/ppm): 31.88-19.31 (18 CH₂), 14.16 (1 CH₃), 13.70 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ/ppm): 33.15 (1 PR₄). Yield: 100%, 14.49 g. Viscosity: 371 mPa·s (25 °C). Density: 1.469 g/cm³ (25 °C).

Trihalide ILs with other cations

[P₆₆₆₁₄][Cl₃]:

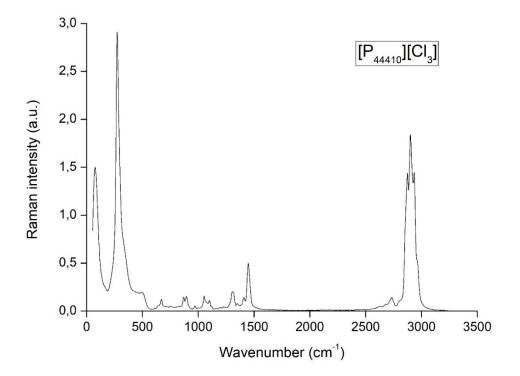
¹H NMR: (300 MHz, CDCl₃, δ /ppm): 2.46 (m, 8H, 4 CH₂), 1.51 (m, 16H, 8 CH₂), 1.26 (m, 32H, 16 CH₂), 0.90 (m, 12H, 4 CH₃) ¹³C NMR: (75 MHz, CDCl₃, δ /ppm): 31.91-18.98 (28 CH₂), 14.12 (1 CH₃), 13.94 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ /ppm): 33.22 (1 PR₄). Yield: 99%, 10.88 g. Viscosity: 590 mPa·s (25 °C). Density: 0.954 g/cm³ (25 °C).

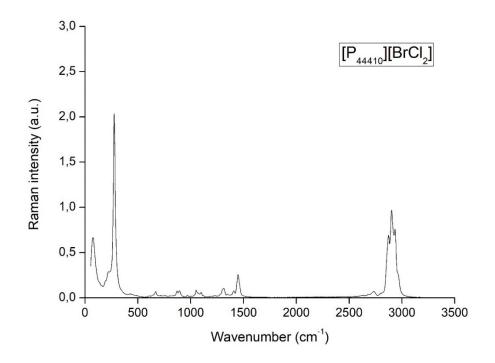
[P₆₆₆₁₄][ClBr₂]:

¹H NMR: (300 MHz, CDCl₃, δ /ppm): 2.29 (m, 8H, 4 CH₂), 1.55 (m, 16H, 8 CH₂), 1.26 (m, 32H, 16 CH₂), 0.91 (m, 12H, 4 CH₃) ¹³C NMR: (75 MHz, CDCl₃, δ /ppm): 31.93-19.10 (28 CH₂), 14.13 (1 CH₃), 14.00 (3 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ /ppm): 33.10 (1 PR₄). Yield: 100%, 10.19 g. Viscosity: 420 mPa·s (25 °C). Density: 1.080 g/cm³ (25 °C).

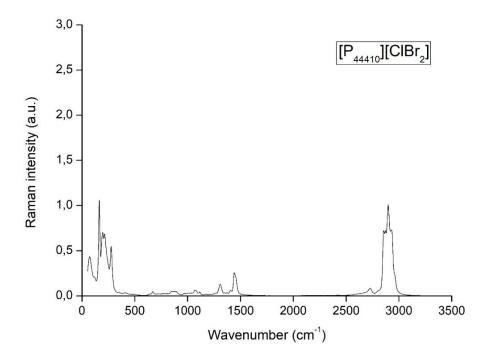
[N₄₄₄₁₀][Br₃]:

¹H NMR: (300 MHz, CDCl₃, δ /ppm): 3.30 (m, 8H, 4 CH₂), 1.72 (m, 8H, 4 CH₂), 1.50 (m, 8H, 4 CH₂), 1.27 (m, 12H, 6 CH₂), 1.05 (m, 9H, 3 CH₃), 0.88 (m, 3H, 1 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ /ppm): 59.17 (4 CH₂-N), 31.86-19.89 (14 CH₂), 14.14 (1 CH₃), 13.80 (3 CH₃). Yield: 100%, 8.50 g. Viscosity: 1201 mPa·s (25 °C). Density: 1.255 g/cm³ (25 °C).

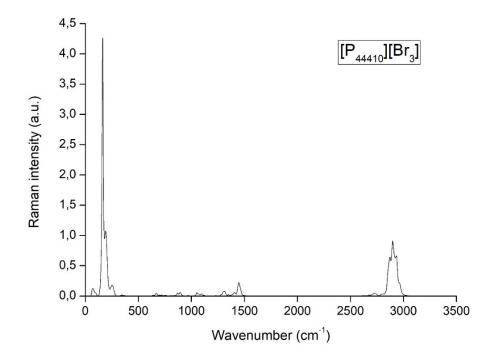

$[C_{10}(P_{444})_2][(Br_3)_2]:$

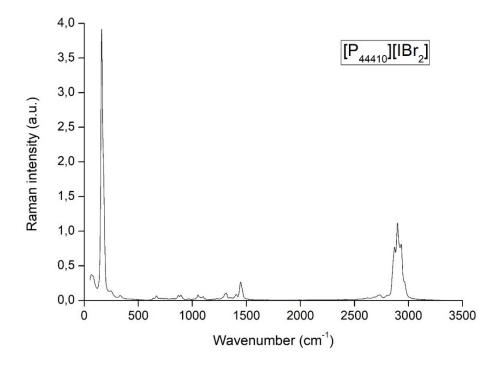

¹H NMR: (300 MHz, CDCl₃, δ /ppm): 2.29 (m, 16H, 8 CH₂), 1.59 (m, 32H, 16 CH₂), 1.38 (m, 8H, 4 CH₂), 1.01 (m, 18H, 6 CH₃). ¹³C NMR: (75 MHz, CDCl₃, δ /ppm): 30.53-28.05 (6 CH₂), 24.00 (12 CH₂), 21.69 (2 CH₂), 19.71-18.92 (8 CH₂), 13.58 (6 CH₃). ³¹P NMR: (162 MHz, CDCl₃, δ /ppm): 32.98 (2 PR₄). Yield: 100%, 10.24 g. Melting temperature: 65.6 °C

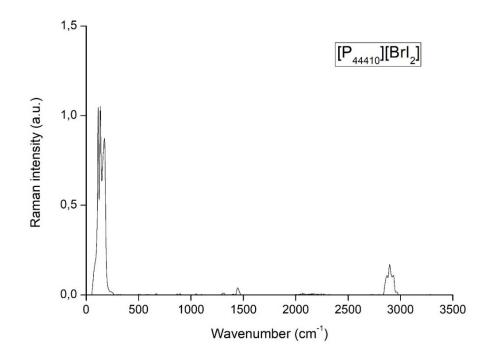
Raman spectra


All the Raman spectra were recorded on the pure ILs, but due to the increasing signal scattering with heavier halogen atoms, the laser power had to be lowered. Below the spectra and an overview of the distinctive trihalide signals can be found, together with the used laser power.

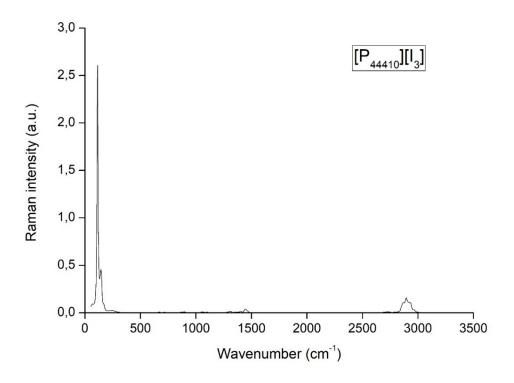
[P₄₄₄₁₀][Cl₃]: 300 mW



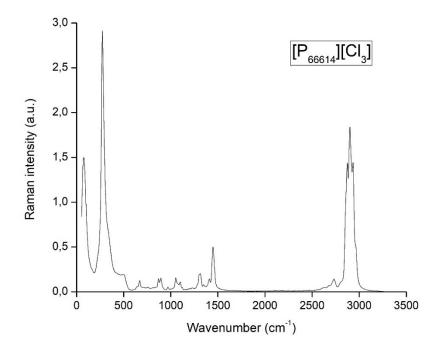

[P₄₄₄₁₀][ClBr₂]: 500 mW

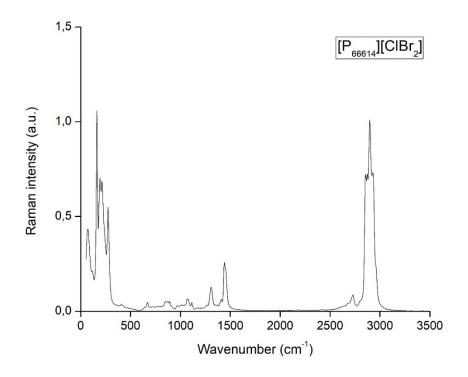


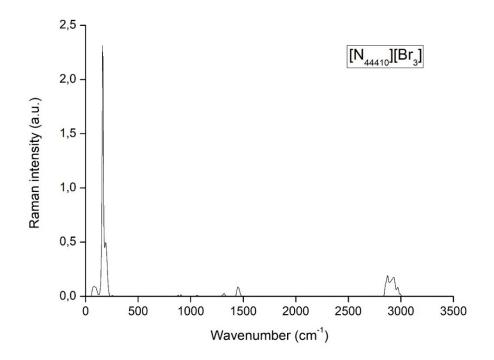
[P₄₄₄₁₀][Br₃]: 500 mW



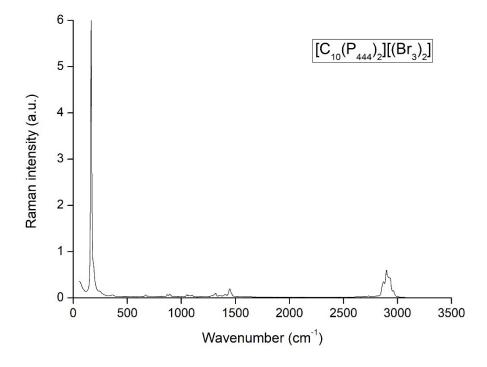
[P₄₄₄₁₀][IBr₂]: 250 mW



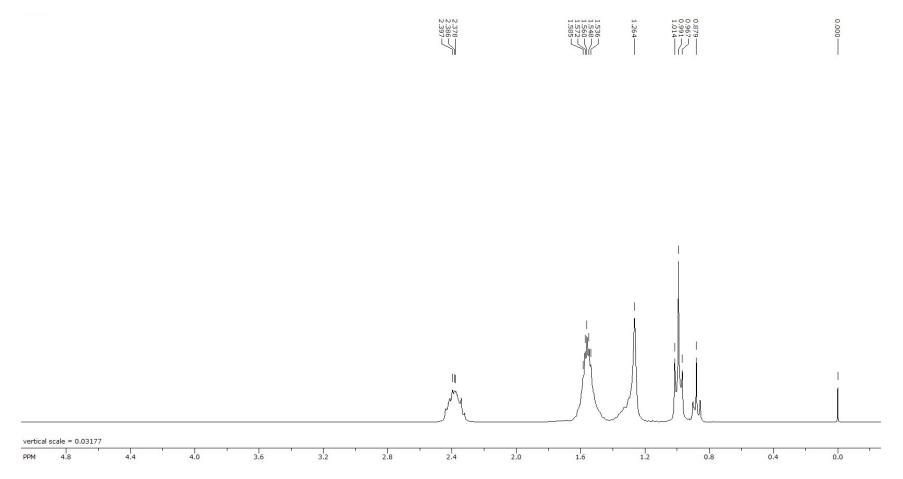

[P₄₄₄₁₀][I₃]: 50 mW



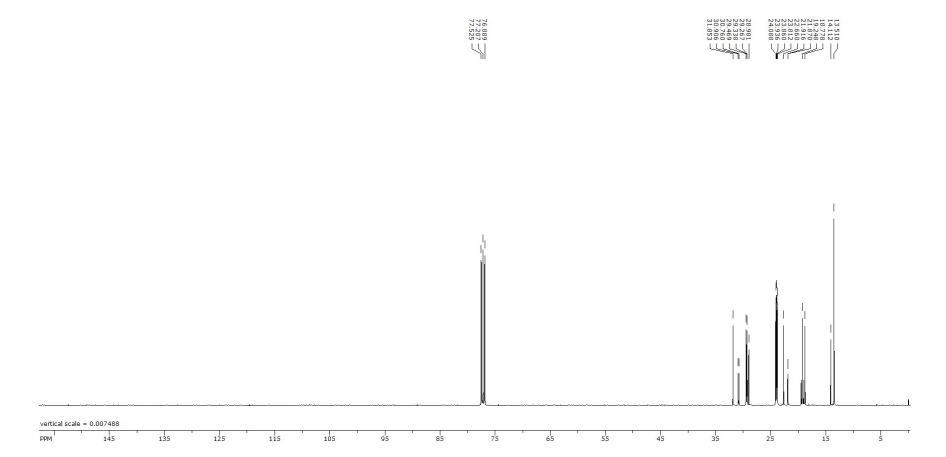
[P₆₆₆₁₄][Cl₃]: 500 mW



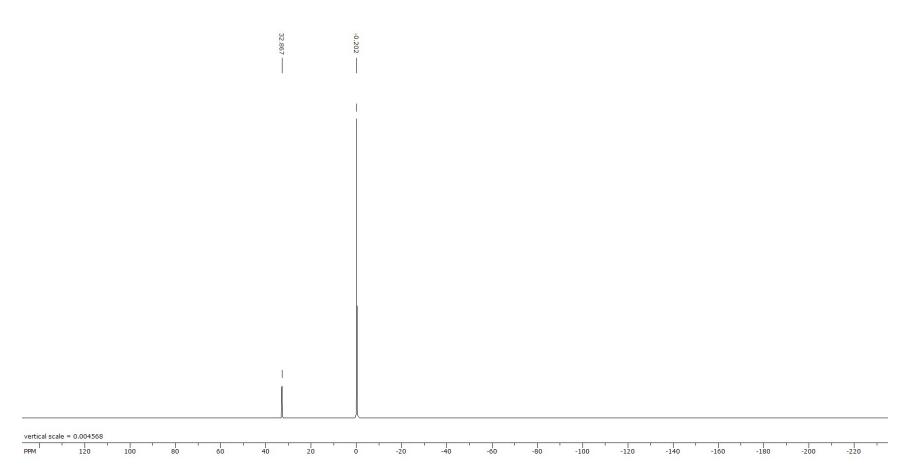
[P₆₆₆₁₄][ClBr₂]: 500 mW

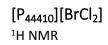


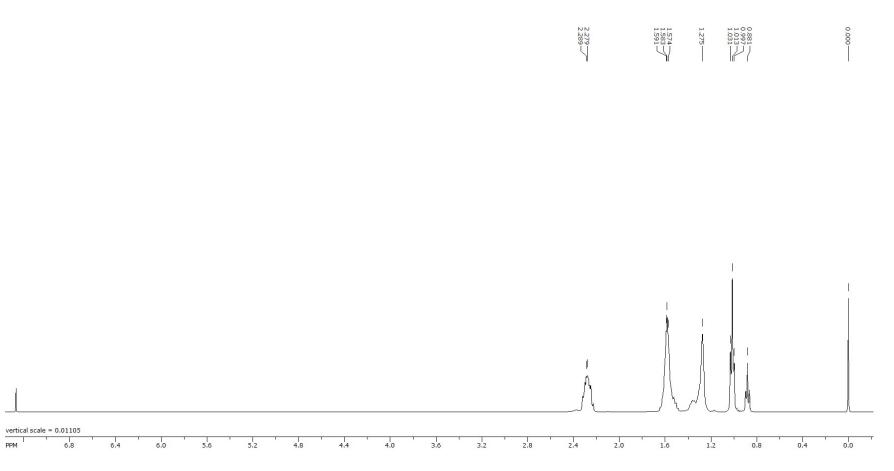
[C₁₀(P₄₄₄)₂][(Br₃)₂]: 500 mW



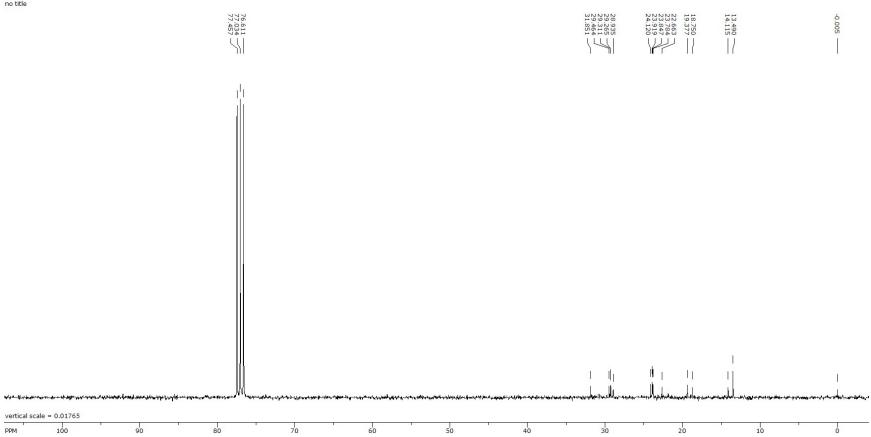
NMR spectra

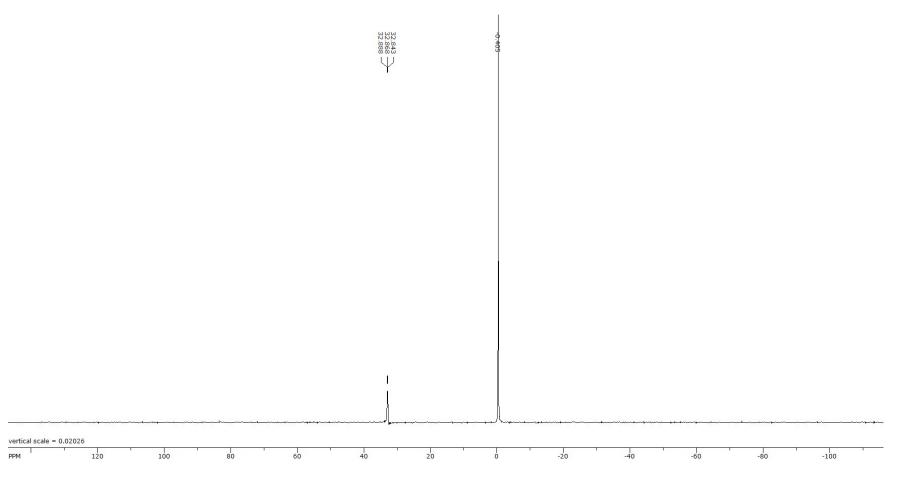

[P₄₄₄₁₀][Cl₃] ¹H NMR



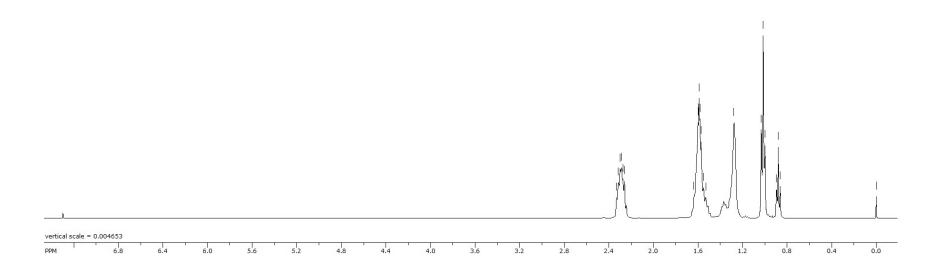

¹³C NMR

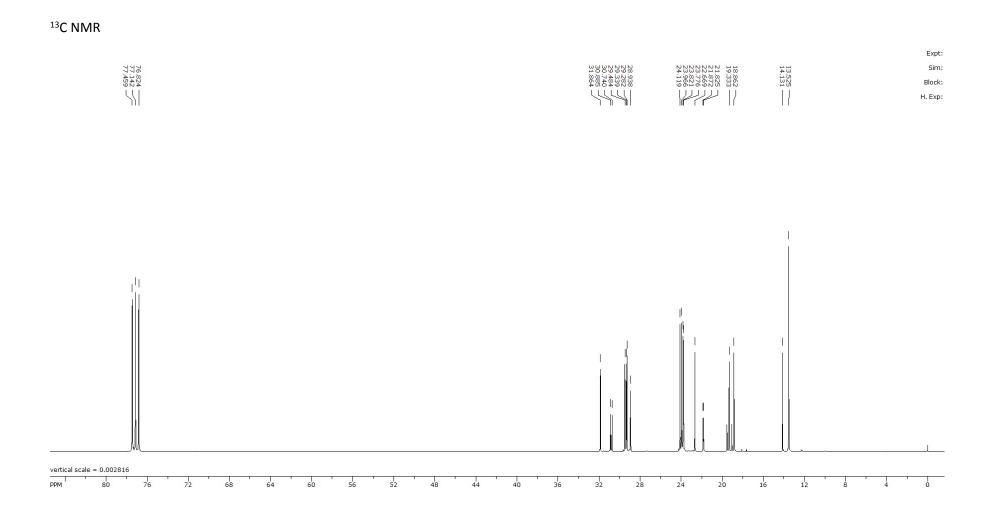
³¹ P	NMR
-----------------	-----

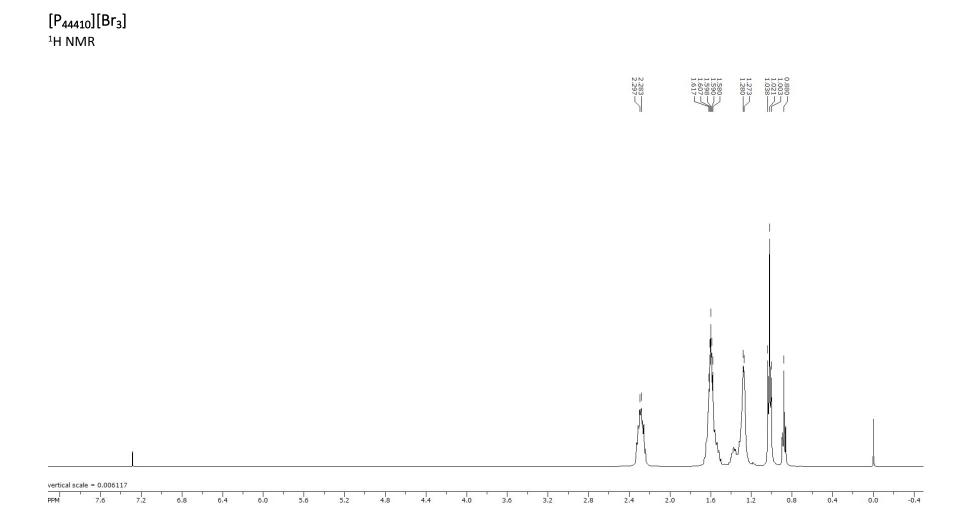


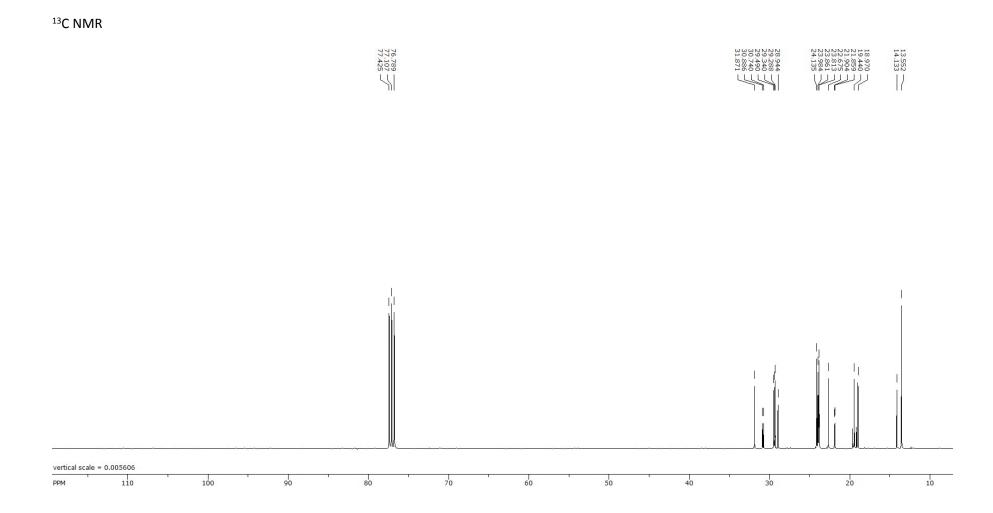


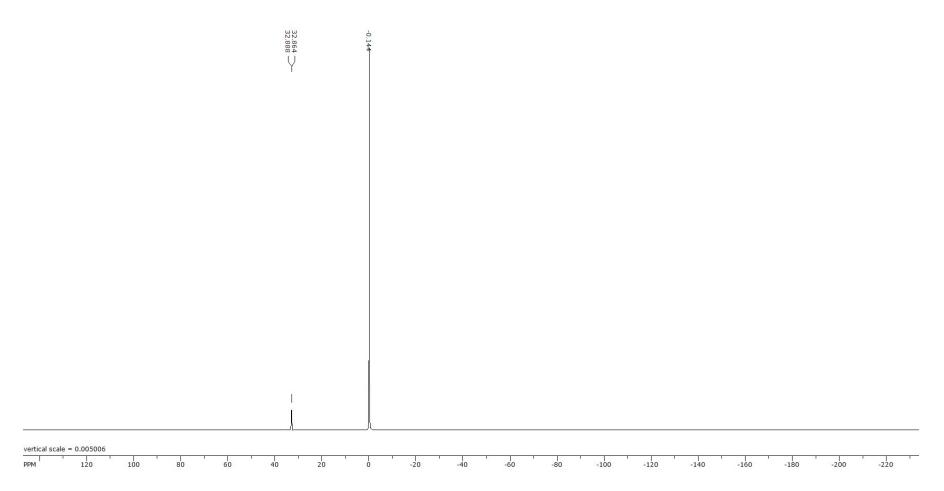
no title

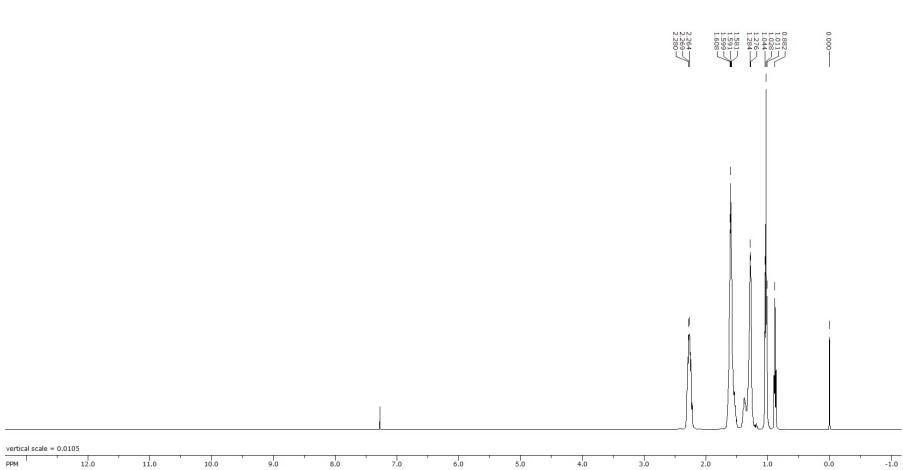




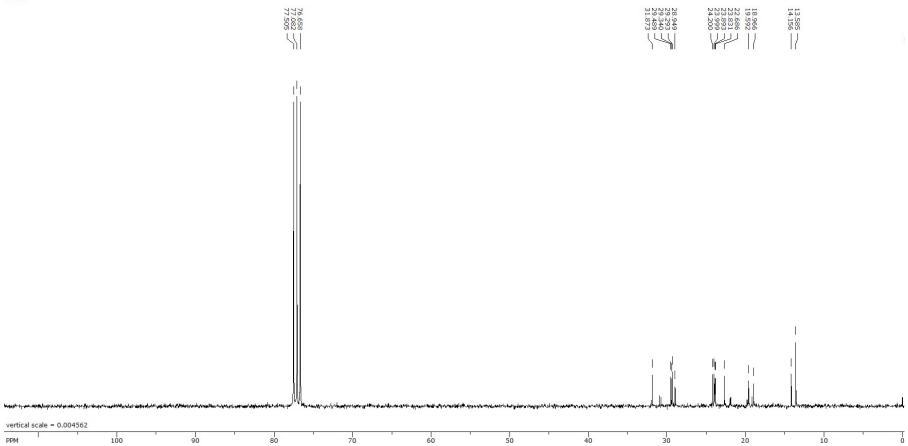


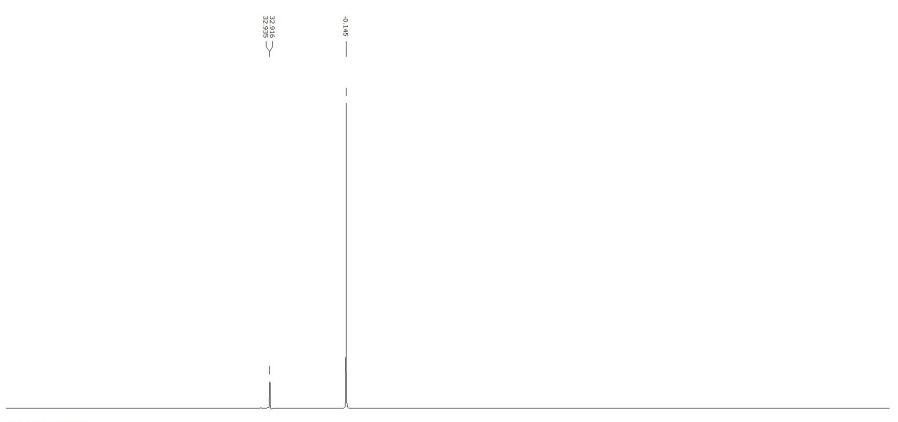



³¹P NMR 32.834 ------0.177 ---vertical scale = 0.003245 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140

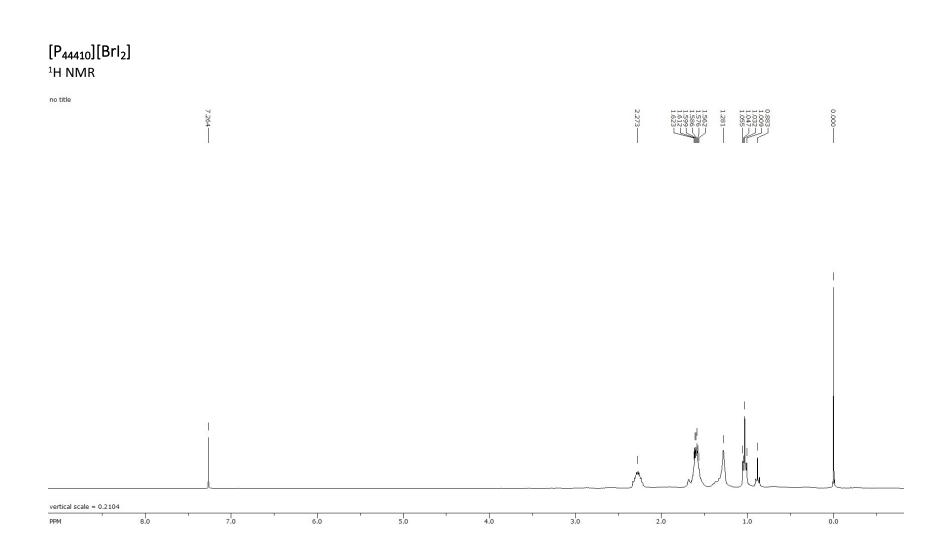


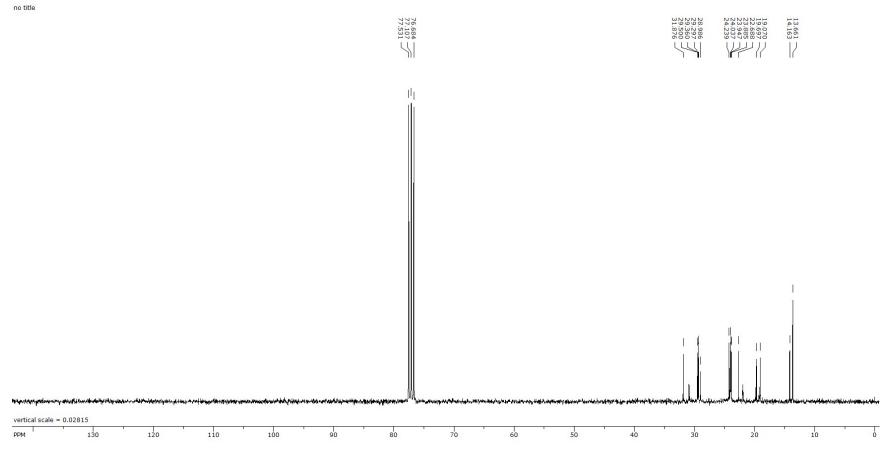
S21



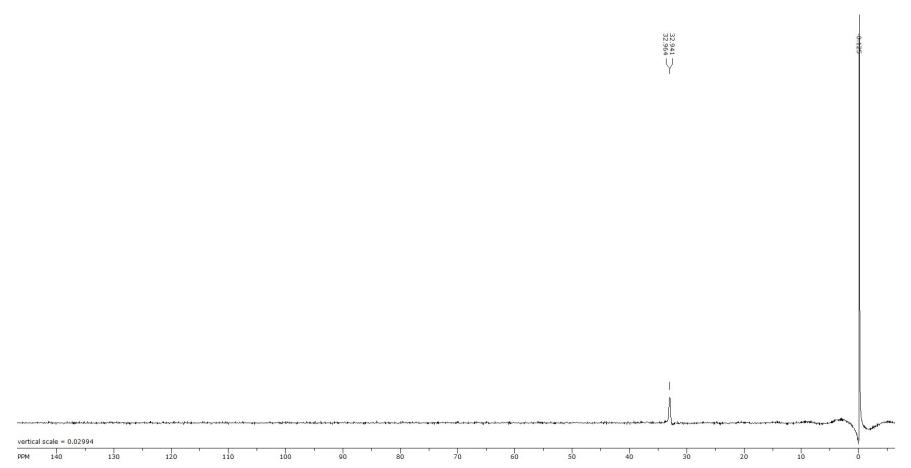

[P₄₄₄₁₀][IBr₂] ¹H NMR

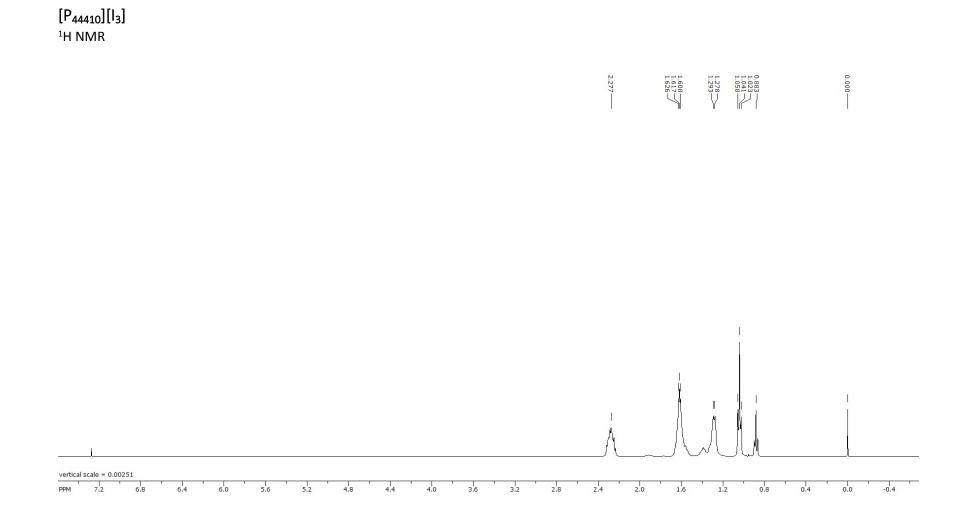
S24



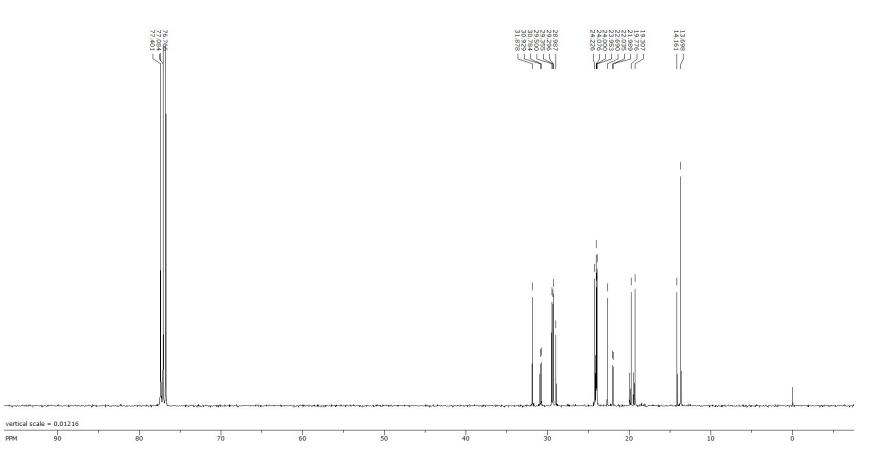


vertical scale = 0.004481

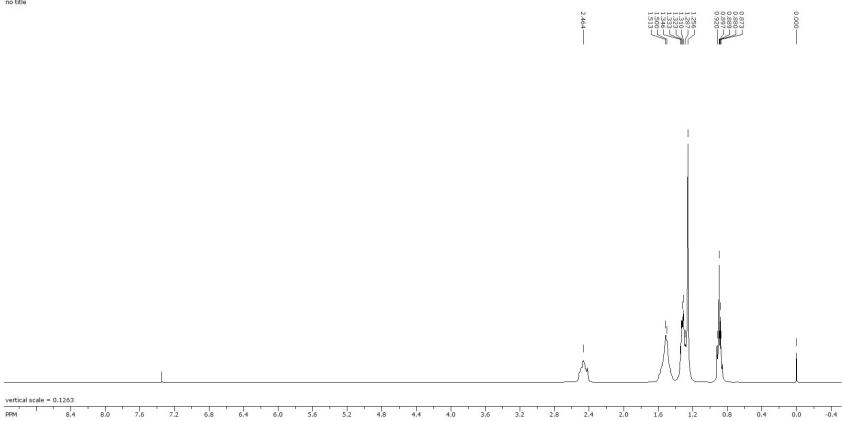

PPM 120 100 60 40 20 -20 -40 -60 -100 80 0 -80 -120 -140 -160 -180 -200 -220



¹³C NMR

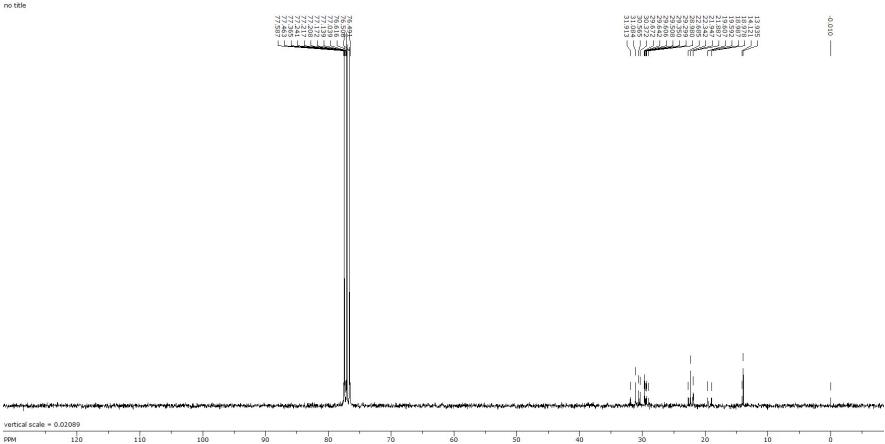

³¹P NMR

S30

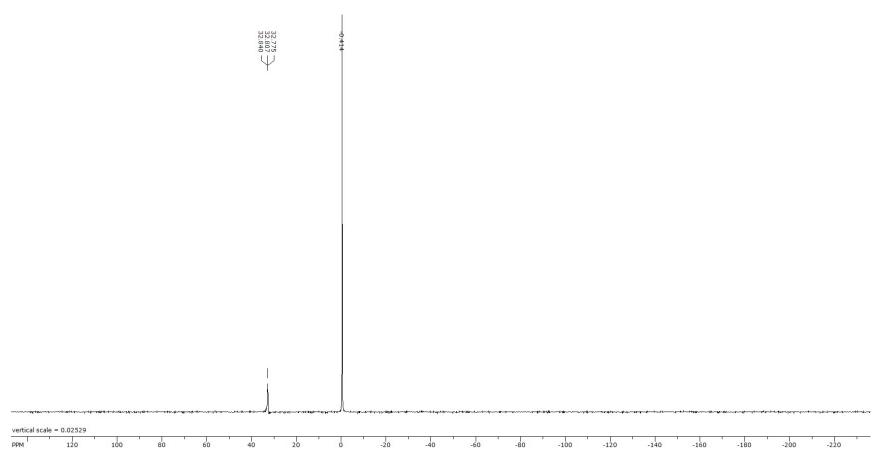


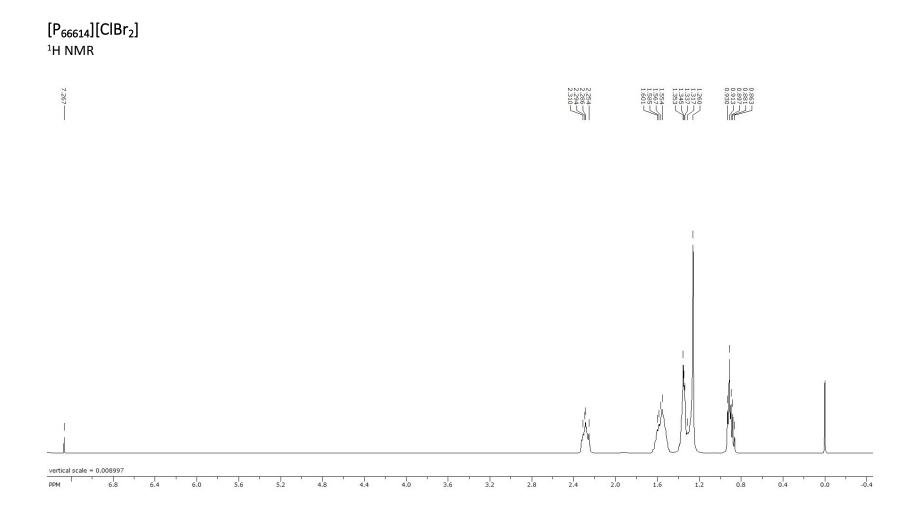
³¹ P	NMR
-----------------	-----

	27.929	-5.341		
	I	I		
scale = 0.007842	\			



no title

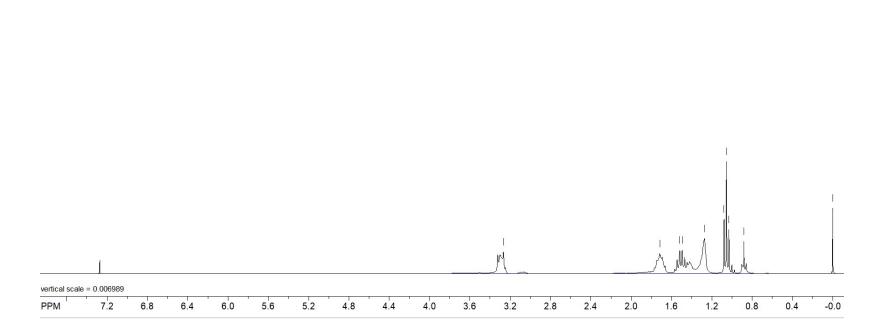




no title

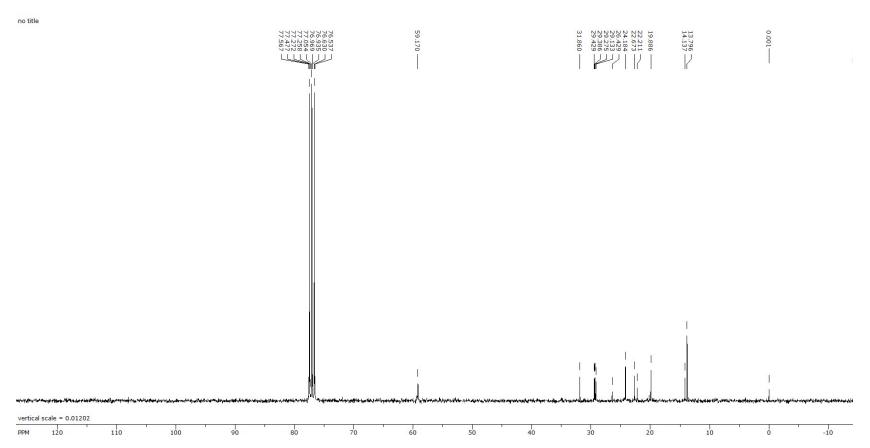
S36

³¹P NMR

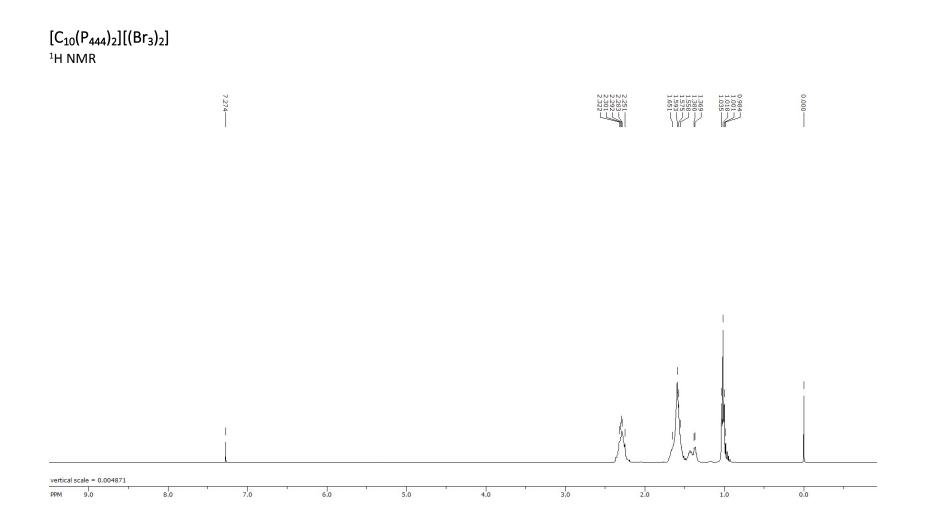

					32		-0.														
					32.683 —		<mark>1</mark> 3														
					ļ																
					1																
					- Î																
and the second second	an alatic matrix a to de			untile of the billion of				و بالمراجع المراجع ا	an an the states of the second	ala	miles statilized		ب بر المراجعة مراجعة المراجعة المراجعة المراجعة المراجعة الم		at a state of the state of the state					an an land	nite an excitation operator
	e = 0.05315		i an a chuirtean an a	n na ang ng n		nde fan	Andrik Colo nia, publi	ind mit of a life day part is a life of a					i laga pajataga		a ta fan de la fan de	niender (fr. Agell alles	in an	h a la sua sua sua sua sua sua sua sua sua su	anina) di sing tanggan	1,11,124,111,111 ,144	
PPM	120	100	80	60	40	20	0	-20		-40	-60	-80		-100	-120	-140	-160	-180	-200	-2	20

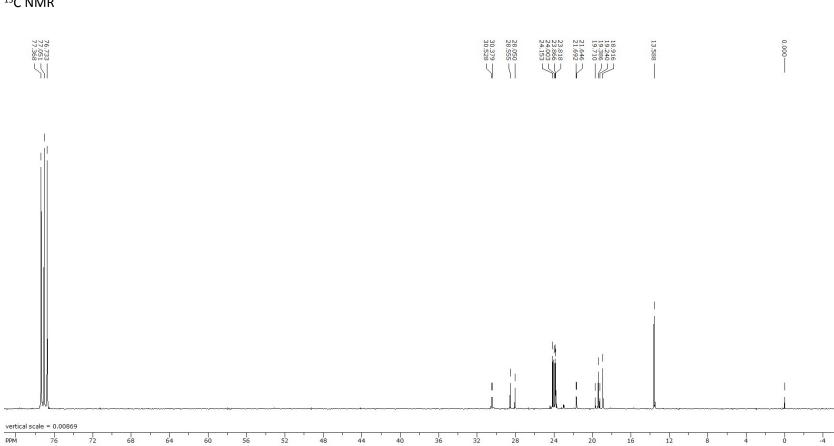
[N₄₄₄₁₀][Br₃]

¹H NMR

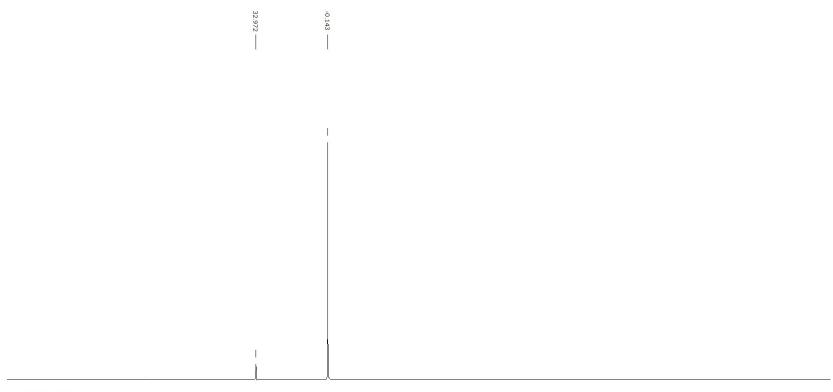

no title

shift = -0.3406 ppm inten. = 0.0023 abs. = 82030 frequency = 300.129900 MHz




3.267

0.881 1.030 1.004 1.078 1.272 1.272 1.518 0.000


¹³C NMR

¹³C NMR

³¹P NMR

vertical scale = 0.003833 PPM 120 -220 100 80 60 40 20 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 0