Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2018

The CO₂ capturing ability of cellulose dissolved in NaOH(aq) at low temperature

Maria Gunnarsson^a, Diana Bernin^{b,c}, Åsa Östlund^d and Merima Hasani^{a,e}*

^e Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology, 100 44 Stockholm, Sweden.

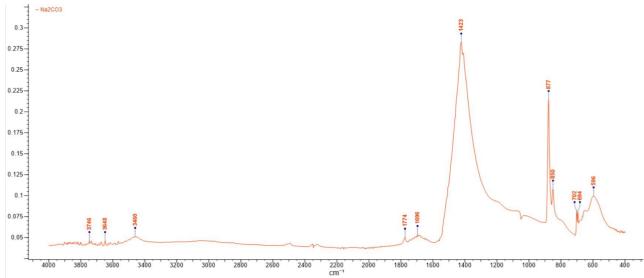


Figure 1. ATR-IR spectrum of Na₂CO₃.

^a Division of Forest Products and Chemical Engineering, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden.; Tel: +46 31 772 10 00; Email: merima.hasani@chalmers.se

^b Swedish NMR Centre, University of Gothenburg, 405 30 Göteborg, Sweden.

^cDivision of Chemical Reaction Engineering, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden.

^d Research Institutes of Sweden, RISE Bioeconomy, Drottning Kristinas väg 67, SE-114 28 Stockholm, Sweden.

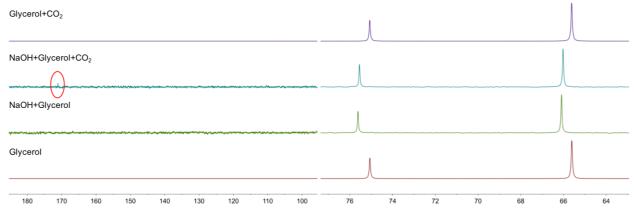


Figure 2. 13 C NMR spectra of glycerol (red), glycerol in NaOH(aq) (green), glycerol in NaOH(aq) with post-dissolution addition of CO_2 (blue) and glycerol with addition of CO_2 (purple). The red circle indicates the presence of Na₂CO₃. All measurements were recorded at room temperature in D_2O .

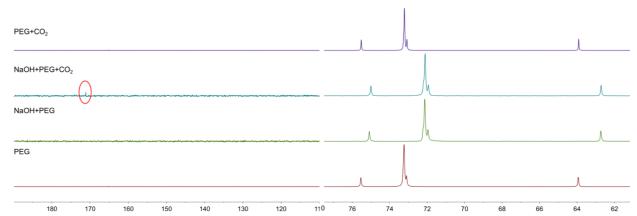


Figure 3. ^{13}C NMR spectra of PEG400 (red), PEG400 in NaOH(aq) (green), PEG400 in NaOH(aq) with post-dissolution addition of CO_2 (blue) and PEG400 with addition of CO_2 (purple). The red circle indicates the presence of Na₂CO₃. All measurements were recorded at room temperature in D_2O .