Supporting Information

Simple strategy towards the substitution of styrene by sobrerol-based monomers in unsaturated polyester resins

Mafalda S. Lima, Cátia S. M.F. Costa, Jorge F.J. Coelho, Ana C. Fonseca*, Arménio C. Serra

CEMMPRE, Department of Chemical Engineering, University of Coimbra, Pólo II, Rua sílvio Lima, 3030-790 Coimbra, Portugal

*Correspondence to: Ana C. Fonseca (E-mail: anafs@eq.uc.pt)

Figure S 2 -¹H NMR spectra of SobAcr (A) and SobMet (B).

The purity of the sobrerol based monomers was calculated by the equation S1:

% purity =
$$1 - \frac{\int alkene \ protons \ of \ SobAcr \ or \ SobMet - \int alkene \ protons \ of \ AcrCl \ or \ MetAn}{\int alkene \ protons \ of \ AcrCl \ or \ MetAn} \times 100$$

The estimated values of purity were found to be 94 % for SobAcr and 97 % for SobMet.

PROCEDURE FOR THE FREE RADICAL POLYMERIZATION (FRP) OF P(SOBACR) AND P(SOBMET) To either SobAcr and SobMet (1 g), 3 %m of benzoyl peroxide (BPO; 0.03 g) was added. Upon dissolution at room temperature, the temperature was raised to 80 °C and the reaction allowed to proceed until a hard solid (either P(SobAcr) or P(SobMet)) was attained.

UPR CHARACTERIZATION

Figure S 2 -1H NMR spectrum of a Bio-UP1 sample in THF-d8.

Figure S 3 -1H NMR spectrum of a Bio-UP2 sample in THF-d₈.

Figure S 4 - Thermogravimetric curves of the SobAcr- ((A) and (B)) and SobMet-containing ((C) and (D)) UPRs in comparison to each of their respective homopolymers P(SobAcr) and P(SobMet).

Table S 1– Characteristic temperatures of the UPRs taken from the TGA. $T_{5\%}$: temperature corresponding to 5 % of mass loss; T_{10} %: temperature corresponding to 10 % of mass loss; T_{max} : temperature of maximal rate of decomposition.

UPR	<i>Т_{5%}</i> (°С)	<i>Т_{10%}</i> (°С)	T _{max} (°C)
BioUPR1_SobAcr	196.51	240.22	373.73 (250.94)
BioUPR1_SobMet	149.56	198.64	363.21 (256.08)
BioUPR1_Sty	209.25	292.16	374.43
BioUPR2_SobAcr	206.20	240.48	390.03 (249.27)
BioUPR2_SobMet	190.76	240.62	386.62 (260.58)
BioUPR2_Sty	249.93	328.36	384.91
ComUPR_SobAcr	201.06	241.06	390.26 (247.91)
ComUPR_SobMet	191.14	230.07	368.98 (249.27)
ComUPR_Sty	191.23	243.25	395.13 (207.06)

Figure S 5 - DMTA traces of the studied Commercial-UP-based UPRs at frequencies 1 Hz and 10 Hz, with either, SobMet (A) or Sty (B) as the UM.

Figure S 6 - DMTA traces of the studied Bio-UP1-based UPRs at frequencies 1 Hz and 10 Hz, with either SobAcr (A), SobMet (B) or Sty (C) as the UM.

Figure S 7 - DMTA traces of the studied Bio-UP2-based UPRs at frequencies 1 Hz and 10 Hz, with either SobAcr (A), SobMet (B) or Sty (C) as the UM.

Figure S 8 - DMTA traces of the studied UPR formulations either Bio-UP1 (A), Bio-UP2 (B) or Commercial-UP (C) as the UP in terms of E''.