Supporting Information Iodine catalyzed diamination of styrene in water with the oxidation of H₂O₂

Liyan Liu, ‡ Qi Sun, ‡ Zicong Yan, Xinping Liang, Zhenggen Zha, Yu Yang* and Zhiyong Wang*

Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Acade my of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, Hefei, P. R. China.

E-mail: zwang3@ustc.edu.cn.

Table of Contents

1. General Information	S2
2. General Procedures for Diamination	S2
3. Characterization Data for the Products	S2
4. Mechanistic Studies	S10
4.1. Radial Trapping Experiments	S10
4.2 Effect of <i>N</i> -Substituents	S10
4.3 kinetics Isotope Effect (KIE)	S10
5. References	S11
6. NMR spectra of product	S12

1. General Information

Unless otherwise indicated, all commercial reagents were used without additional purification. All Substances were synthesized according to the previous literature.¹ ¹H NMR and ¹³C NMR were recorded on a Bruker-400 MHz Spectrometer (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz). All chemical shifts (δ) were reported in ppm and coupling constants (*J*) in Hz. All chemical shifts were reported relative to tetramethylsilane (0 ppm for ¹H), and CDCl₃ (77 ppm for ¹³C), respectively. HRMS (ESI) were recorded on a Water TM Q-TOF Premier Mass Spectrometer.

2. General Procedure for Diamination

To a 5 mL tube was added 2-aminostyreen **1** (0.2 mmol), aniline **2** (0.3 mmol, 1.5 equiv), H_2O_2 (0.6 mmol, 30% in water), TMDAI (20% mol) and water (1 mL). The mixture was stirred at 45 °C for 12 hours, and extracted with DCM (1 mL × 3). The combined organic phase was washed with brine and dried over anhydrous Na₂SO₄. After the solvent had been completely removed, the residue was purified by column chromatography on silica gel to give the product **3**.

3. Characterization Data for the Products

N-phenyl-1-tosylindolin-3-amine (3a)

White solid. m.p. 135-136 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 7.7 Hz, 1H), 7.25 (d, *J* = 7.3 Hz, 1H), 7.21 - 7.13 (m, 4H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.42 (d, *J* = 7.9 Hz, 2H), 4.85 (dd, *J* = 7.4, 3.5 Hz, 1H), 4.10 (dd, *J* = 11.6, 7.3

Hz, 1H), 3.83 (dd, *J* = 11.7, 3.5 Hz, 1H), 3.32 (s, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 144.1, 142.0, 133.6, 132.2, 129.9, 129.7, 129.3, 127.2, 125.5, 124.3, 118.4, 115.8, 113.1, 56.6, 53.1, 21.5. HRMS (ESI) m/z calcd for C₂₁H₂₀N₂NaO₂S [M+Na]⁺ 387.1143, found 387.1140.

5-methyl-N-phenyl-1-tosylindolin-3-amine (3b)

Red solid. m.p. 141 - 143 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 8.3 Hz, 1H), 7.59 - 7.54 (m, 2H), 7.21 - 7.12 (m, 5H), 7.05 (s, 1H), 6.79 - 6.70 (m, 1H), 6.47 - 6.35 (m, 2H), 4.78 (dd, *J* = 7.3, 3.4 Hz, 1H), 4.09 (dd, *J* = 11.8, 7.2 Hz, 1H), 3.80 (dd, *J* = 11.8, 3.5 Hz, 1H), 3.19 (s, 1H), 2.38 (s,

3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 144.0, 139.7, 134.2, 133.6, 132.5, 130.5, 129.6, 129.3, 127.3, 125.9, 118.3, 115.9, 113.1, 56.8, 53.2, 21.5, 20.9. HRMS (ESI) m/z calcd for C₂₂H₂₂N₂NaO₂S [M+Na]⁺ 401.1300, found 401.1297.

5-butyl-*N*-phenyl-1-tosylindolin-3-amine (3c)

Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 8.3 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.21 - 7.12 (m, 5H), 7.06 (s, 1H), 6.75 (t, *J* = 7.4 Hz, 1H), 6.41 (d, *J* = 7.9 Hz, 2H), 4.79 (s, 1H), 4.10 (dd, *J* = 11.7, 7.2 Hz, 1H), 3.80 (dd, *J* = 11.7, 3.4 Hz, 1H), 3.21 (s, 1H), 2.55 (t, *J* = 7.8

Hz, 2H), 2.38 (s, 3H), 1.50 - 1.58 (m, 2H), 1.29 - 1.35(m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 144.0, 139.8, 139.4, 133.7, 132.3, 129.9, 129.6, 129.3, 127.3, 125.2, 118.3, 115.8, 113.1, 56.8, 53.2, 35.0, 33.6, 22.2, 21.5, 13.9. HRMS (ESI) m/z calcd for $C_{25}H_{28}N_2NaO_2S$ [M+Na]⁺ 443.1769, found 443.1767.

5-(tert-butyl)-*N*-phenyl-1-tosylindolin-3-amine (3d)

Gray oil. m.p. 136 - 137 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.58 (m, 3H), 7.36 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.28 (d, *J* = 2.1 Hz, 1H), 7.22 - 7.14 (m, 4H), 6.79 - 6.73 (m, 1H), 6.49 - 6.41 (m, 2H), 4.84 (dd, *J* = 7.2, 3.5 Hz, 1H), 4.09 (dd, *J* = 11.5, 7.2 Hz, 1H), 3.80 (dd, *J* = 11.5, 3.5

Hz, 1H), 3.32 (s, 1H), 2.39 (s, 3H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 145.7, 144.0, 139.5, 133.8, 131.8, 129.7, 129.3, 127.3, 127.0, 122.2, 118.3, 115.2, 113.2, 56.8, 53.4, 34.5, 31.4, 21.5. HRMS (ESI) m/z calcd for C₂₅H₂₈N₂NaO₂S [M+Na]⁺ 443.1769, found 443.1770.

5-nitro-*N*-phenyl-1-tosylindolin-3-amine (3e)

Yellow solid. m.p. 148 - 150 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (dd, *J* = 9.0, 2.4 Hz, 1H), 8.13 (d, *J* = 2.3 Hz, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.71 - 7.64 (m, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.23 - 7.15 (m, 2H), 6.80 (t, *J* = 7.4 Hz, 1H), 6.53 - 6.47 (m, 2H), 5.03 (dd, *J* = 7.9, 4.2

Hz, 1H), 4.25 (dd, *J* = 11.3, 7.8 Hz, 1H), 3.90 (dd, *J* = 11.3, 4.3 Hz, 1H), 3.61 (s, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 145.2, 145.0, 143.9, 133.3, 133.0, 130.1, 129.5, 127.1, 126.4, 121.7, 119.1, 114.2, 113.3, 57.2, 52.3, 21.6. HRMS (ESI) m/z calcd for C₂₁H₂₀N₃O₄S [M+H]⁺ 410.1175, found 410.1175.

5-fluoro-N-phenyl-1-tosylindolin-3-amine (3f)

Red solid. m.p. 133 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (dd, *J* = 8.9, 4.5 Hz, 1H), 7.59 - 7.53 (m, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.19 - 7.14 (m, 2H), 7.04 (td, *J* = 8.8, 2.7 Hz, 1H), 6.97 - 6.91 (m, 1H), 6.77 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.43 - 6.35 (m, 2H), 4.80 (dd, *J* = 7.6, 3.7 Hz, 1H), 4.15 (dd, *J*

= 12.0, 7.4 Hz, 1H), 3.83 (dd, J = 11.9, 3.7 Hz, 1H), 3.15 (br, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.8 (d, J = 244.0 Hz), 145.3, 144.3, 138.0 (d, J = 2.2 Hz), 134.4 (d, J = 7.9 Hz), 133.4, 129.8, 129.4, 127.3, 118.7, 117.4 (d, J = 8.3 Hz), 116.7 (d, J = 23.7 Hz), 113.2, 112.5 (d, J = 24.1 Hz), 57.0, 53.1 (d, J = 1.8 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.7. HRMS (ESI) m/z calcd for C₂₁H₁₉FN₂NaO₂S [M+Na]⁺ 405.1049, found 405.1045.

5-chloro-*N*-phenyl-1-tosylindolin-3-amine (3g)

Gray solid. m.p. 154 - 155 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.7 Hz, 1H), 7.60 - 7.55 (m, 2H), 7.29 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.24 - 7.20 (m, 3H), 7.19 - 7.14 (m, 2H), 6.75 - 6.79 (m, 1H), 6.44 - 6.37 (m, 2H), 4.82 (dd, *J* = 7.5, 3.8 Hz, 1H), 4.12 (dd, *J* = 11.7, 7.5 Hz, 1H),

3.81 (dd, *J* = 11.7, 3.8 Hz, 1H), 3.25 (s, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 144.4, 140.7, 134.1, 133.3, 129.9, 129.8, 129.4, 129.4, 127.2, 125.6, 118.6, 116.9, 113.2, 56.8, 52.9, 21.5. HRMS (ESI) m/z calcd for C₂₁H₂₀ClN₂O₂S [M+H]⁺ 399.0934, found 399.0925.

5-methoxy-N-phenyl-1-tosylindolin-3-amine (3h)

Red oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.9 Hz, 1H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.20 - 7.14 (m, 4H), 6.89 (dd, *J* = 8.8, 2.7 Hz, 1H), 6.78 (d, *J* = 3.0 Hz, 1H), 6.74 (d, *J* = 7.4, 1H), 6.70 - 6.66 (m, 1H), 6.40 - 6.33 (m, 2H), 4.74 (dd, *J* = 7.2, 3.5 Hz, 1H), 4.11 (dd, *J* = 12.1, 7.2

Hz, 1H), 3.80 (dd, *J* = 12.1, 3.5 Hz, 1H), 3.75 (s, 3H), 3.09 (s, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 144.0, 135.3, 134.1, 133.5, 129.7, 129.3, 127.3, 118.4, 117.6, 115.6, 115.1,

113.1, 110.4, 57.0, 55.6, 53.5, 21.5. HRMS (ESI) m/z calcd for C₂₂H₂₂N₂Na O₃S [M+Na]⁺ 417.1249, found 417.1248.

N-(4-fluorophenyl)-1-tosylindolin-3-amine (3i)

Red solid. m.p. 125 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.60 (d, *J* = 8.3 Hz, 2H), 7.32 – 7.36 (m, 1H), 7.26 - 7.23 (m, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.06 (td, *J* = 7.5, 1.0 Hz, 1H), 6.88 (dd, *J* = 9.7, 7.7 Hz, 2H), 6.39 - 6.31 (m, 2H), 4.79 (dd, *J* = 7.3, 3.4 Hz, 1H), 4.07 (dd, *J* = 11.7, 7.3 Hz, 1H), 3.81 (dd, *J* = 11.6, 3.4 Hz, 1H), 3.19 (br, 1H), 2.38 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 156.1 (d, *J* = 235.1 Hz), 144.2, 141.9, 141.9, 133.6, 132.0, 129.9, 129.7, 127.2, 125.5, 124.3, 115.9 (d, *J* = 22.3 Hz), 115.8, 114.1 (d, *J* = 7.3 Hz), 56.3, 53.7, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.5. HRMS (ESI) m/z calcd for C₂₁H₂₀FN₂O₂S [M+H]⁺ 383.1230, found 383.1230.

N-(4-bromophenyl)-1-tosylindolin-3-amine (3j)

Red solid. m.p. 144 - 146 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.59 (dd, *J* = 8.4, 2.3 Hz, 2H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.27 - 7.16 (m, 5H), 7.06 (td, *J* = 7.6, 2.1 Hz, 1H), 6.32 - 6.23 (m, 2H), 4.79 (s 1H), 4.04 - 4.09 (m, 1H), 3.78 - 3.82 (m, 1H), 3.32 (s, 1H), 2.38 (d, *J* = 2.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 144.2, 141.9, 133.6, 132.0, 131.8, 130.0,

129.7, 127.2, 125.5, 124.4, 115.8, 114.6, 109.9, 56.2, 53.1, 21.5. HRMS (ESI) m/z calcd for C₂₁H₁₉BrN₂O₂SNa [M+Na]⁺ 465.0248, found 465.0211.

N-(4-chlorophenyl)-1-tosylindolin-3-amine (3k)

Red solid. 133 - 134 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 7.3 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.13 - 6.96 (m, 3H), 6.33 (d, *J* = 8.4 Hz, 2H), 4.79 (dd, *J* = 7.4, 3.3 Hz, 1H), 4.06 (dd, *J* = 11.7, 7.3 Hz, 1H), 3.80 (dd, *J* = 11.6, 3.4 Hz, 1H), 3.31 (s, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 144.1,

142.0, 133.6, 131.8, 130.0, 129.7, 129.2, 127.2, 125.5, 124.4, 122.9, 115.9, 114.2, 56.2, 53.2, 21.5.

HRMS (ESI) m/z calcd for $C_{21}H_{20}CIN_2O_2S$ [M+H]⁺ 399.0934, found 399.0922.

N-(3-chlorophenyl)-1-tosylindolin-3-amine (3l)

Yellow solid. m.p. 125 - 127 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.2 Hz, 1H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.36 (t, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 7.1 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.10 - 7.05 (m, 2H), 6.71 (d, *J* = 7.8 Hz, 1H), 6.31 (s, 1H), 6.28 (d, *J* = 8.2 Hz, 1H), 4.77 (dd, *J* = 7.1, 3.0 Hz, 1H), 4.07 (dd, *J* = 11.8, 7.1 Hz, 1H), 3.82 (dd, *J* = 11.8, 2.8 Hz, 1H), 3.26 (s, 1H), 2.40 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 146.7, 144.3, 142.0, 135.0, 133.6, 131.8, 130.3, 130.1, 129.8, 127.2, 125.5, 124.5, 118.2, 116.2, 113.1, 111.1, 56.3, 53.0, 21.5. HRMS (ESI) m/z calcd for C₂₁H₂₀ClN₂O₂S [M+H]⁺ 399.0934, found 399.0930.

N-(2-chlorophenyl)-1-tosylindolin-3-amine (3m)

Red solid. m.p. 141 - 143 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.1 Hz, 1H), 7.61 (d, *J* = 8.1 Hz, 2H), 7.39 - 7.33 (m, 1H), 7.27 - 7.23 (m, 2H), 7.18 - 7.12 (m, 3H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.69 (t, *J* = 7.7 Hz, 1H), 6.59 (d, *J* = 8.2 Hz, 1H), 4.88 (td, *J* = 7.3, 3.8 Hz, 1H), 4.19 (dd, *J* = 11.5, 7.5 Hz, 1H),

4.05 (d, *J* = 7.4 Hz, 1H), 3.82 (dd, *J* = 11.6, 3.9 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 142.1, 141.8, 133.6, 131.6, 130.2, 129.8, 129.6, 127.9, 127.2, 125.5, 124.5, 119.5, 118.4, 115.7, 111.4, 56.8, 53.1, 21.7. HRMS (ESI) m/z calcd for C₂₁H₁₉ClN₂O₂SNa [M+Na]⁺ 421.0753, found 421.0739.

N-(4-methoxyphenyl)-1-tosylindolin-3-amine (3n)

Red oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, J = 8.1 Hz, 1H), 7.63 - 7.57 (m, 2H), 7.34 - 7.30 (m, 1H), 7.23 (s, 1H), 7.20 (d, J = 7.9 Hz, 2H), 7.04 (td, J = 7.5, 1.0 Hz, 1H), 6.79 - 6.73 (m, 2H), 6.43 - 6.35 (m, 2H), 4.79 (dd, J = 7.4, 3.5 Hz, 1H), 4.07 (dd, J = 11.6, 7.4 Hz, 1H), 3.81 (dd, J = 11.6, 3.5 Hz, 1H), 3.75 (s, 3H), 3.03 (br, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

152.6, 144.1, 141.8, 139.6, 133.6, 132.4, 129.7, 129.6, 127.2, 125.5, 124.2, 115.7, 114.8, 114.7, 56.4, 55.6, 54.0, 21.5. HRMS (ESI) m/z calcd for C₂₂H₂₃N₂O₃S [M+H]⁺ 395.1429, found

N-(3-methoxyphenyl)-1-tosylindolin-3-amine (30)

Red oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.62 -7.57 (m, 2H), 7.37 - 7.28 (m, 1H), 7.26 - 7.24 (m, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.12 - 7.01 (m, 2H), 6.32 (dd, *J* = 8.2, 1.6 Hz, 1H), 6.03 (dd, *J* = 8.1, 1.5 Hz, 1H), 5.98 - 5.99 (m, 1H), 4.82 (dd, *J* = 7.4, 3.4 Hz, 1H), 4.08 (dd, *J* = 11.7, 7.3 Hz, 1H), 3.83 (dd, *J* = 11.7, 3.5 Hz, 1H), 3.75 (s, 3H), 3.31 (s, 1H), 2.38 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 160.7, 147.0, 144.1, 141.9, 133.6, 132.1, 130.1, 129.9, 129.7, 127.2, 125.5, 124.3, 115.8, 106.1, 103.1, 99.4, 56.6, 55.0, 53.1, 21.5. HRMS (ESI) m/z calcd for C₂₂H₂₂N₂NaO₃S [M+Na]⁺ 417.1249, found 417.1251.

N-(2-methoxyphenyl)-1-tosylindolin-3-amine (3p)

Red oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.32 (td, *J* = 7.8, 1.3 Hz, 1H), 7.28 (d, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.04 (td, *J* = 7.5, 1.0 Hz, 1H), 6.85 (td, *J* = 7.4, 1.8 Hz, 1H), 6.78 - 6.75 (m, 1H), 6.75 - 6.70 (m, 1H), 6.54 (dd, *J* = 7.8, 1.5 Hz,

1H), 4.92 (dd, *J* = 7.7, 4.4 Hz, 1H), 4.15 (dd, *J* = 11.1, 7.7 Hz, 1H), 3.83 (s, 1H), 3.80 (dd, *J* = 11.1, 4.4 Hz, 1H), 3.74 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 144.1, 141.9, 135.7, 133.6, 132.1, 129.6, 127.2, 125.5, 124.0, 121.1, 117.5, 115.0, 115.0, 110.0, 109.7, 56.8, 55.2, 52.8, 21.5. HRMS (ESI) m/z calcd for C₂₂H₂₂N₂NaO₃S [M+Na]⁺ 417.1249, found 417.1243.

N-(p-tolyl)-1-tosylindolin-3-amine (3q)

Red oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, J = 8.1 Hz, 1H), 7.54 - 7.50 (m, 2H), 7.28 - 7.23 (m, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.12 (d, J = 7.6 Hz, 2H), 6.97 (td, J = 7.5, 1.0 Hz, 1H), 6.92 - 6.88 (m, 2H), 6.26 (d, J = 8.4 Hz, 2H), 4.75 (dd, J = 7.5, 3.5 Hz, 1H), 4.02 (dd, J = 11.6, 7.4 Hz, 1H), 3.74 (dd, J = 11.6, 3.6 Hz, 1H), 3.04 (br, 1H), 2.31 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

144.1, 143.3, 141.9, 133.7, 132.4, 129.9, 129.8, 129.7, 127.6, 127.2, 125.5, 124.3, 115.8, 113.4, 56.6, 53.4, 21.5, 20.3. HRMS (ESI) m/z calcd for C₂₂H₂₂N₂NaO₂S [M+Na]⁺ 401.1300, found

N-(4-butylphenyl)-1-tosylindolin-3-amine (3r)

Red oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.63 - 7.57 (m, 2H), 7.36 - 7.30 (m, 1H), 7.24 (d, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.05 (td, *J* = 7.5, 1.0 Hz, 1H), 7.02 - 6.96 (m, 2H), 6.40 - 6.32 (m, 2H), 4.83 (dd, *J* = 7.5, 3.6 Hz, 1H), 4.10 (dd, *J* = 11.6, 7.3 Hz, 1H), 3.82 (dd, *J* = 11.6, 3.6 Hz, 1H), 3.16 (s, 1H), 2.51 (t, *J* = 7.7 Hz, 2H), 2.38 (s, 3H), 1.60 -

1.50 (m, 2H), 1.39 - 1.30 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 143.5, 141.9, 133.7, 132.9, 132.4, 129.8, 129.7, 129.2, 127.2, 125.5, 124.3, 115.8, 113.2, 56.7, 53.4, 34.6, 33.9, 22.3, 21.5, 14.0. HRMS (ESI) m/z calcd for C₂₅H₂₉N₂O₂S [M+H]⁺ 421.1950, found 421.1949.

N-(4-(tert-butyl)phenyl)-1-tosylindolin-3-amine (3s)

Red oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.64 -7.59 (m, 2H), 7.36 - 7.30 (m, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 7.22 - 7.18 (m, 4H), 7.05 (td, *J* = 7.5, 1.0 Hz, 1H), 6.42 - 6.37 (m, 2H), 4.85 (dd, *J* = 7.7, 3.7 Hz, 1H), 4.12 (dd, *J* = 11.5, 7.4 Hz, 1H), 3.82 (dd, *J* = 11.5, 3.8 Hz, 1H), 3.23 (s, 1H), 2.39 (s, 3H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 143.3,

141.9, 141.2, 133.7, 132.4, 129.8, 129.7, 127.3, 126.1, 125.5, 124.2, 115.7, 112.9, 56.8, 53.3, 33.9, 31.5, 21.5. HRMS (ESI) m/z calcd for C₂₅H₂₉N₂O₂S [M+H]⁺ 421.1950, found 421.1937.

N-(naphthalen-1-yl)-1-tosylindolin-3-amine (3t)

Red solid. m.p.118 - 119 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.47 - 7.41 (m, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.35 - 7.28 (m, 4H), 7.24 (d, *J* = 4.8 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 7.9 Hz, 2H), 6.53 (d, *J* = 7.3 Hz, 1H), 4.97 (dd, *J* = 7.2, 2.9 Hz, 1H), 4.25 (dd, *J* = 11.9, 7.2 Hz, 1H), 4.01 (dd, *J* = 12.0, 2.3 Hz, 1H), 3.91 (s, 1H), 2.25 (s,

3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 141.3, 139.8, 133.3, 132.7, 131.2, 129.1, 128.7, 127.7, 126.1, 125.3, 124.9, 124.7, 123.7, 123.5, 122.2, 118.8, 117.6, 115.1, 104.0, 55.6, 52.4, 20.5. HRMS

(ESI) m/z calcd for $C_{25}H_{22}N_2NaO_2S$ [M+Na]⁺ 437.1300, found 437.1312.

N-phenethyl-1-tosylindolin-3-amine (3v)

Colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.62 (m, 3H), 7.32 – 7.10 (m, 9H), 7.00 (td, *J* = 7.5, 1.0 Hz, 1H), 4.16 (dd, *J* = 7.9, 4.1 Hz, 1H), 3.90 (dd, *J* = 11.3, 7.9 Hz, 1H), 3.73 (dd, *J* = 11.3, 4.1 Hz, 1H), 2.79 – 2.68 (m, 2H), 2.68 – 2.58 (m, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 141.7, 139.5, 133.7, 133.1, 129.6, 129.2, 128.5, 128.4, 127.2, 126.2, 125.3, 123.8, 115.1, 57.7, 55.9,

47.6, 36.4, 21.5. HRMS (ESI) m/z calcd for C₂₃H₂₅N₂O₂S [M+H]⁺ 393.1631, found 393.1642.

4. Mechanistic Studies

4.1. Radial Trapping Experiments

1a + 2a
$$\xrightarrow{H_2O_2, \text{TMDAI}}$$
 3a
 $H_2O 45 \degree C$
BHT 83%
1,1-Diphenylethylene 80%

To a 5 mL tube was added **1a** (0.2 mmol), **2a** (0.3 mmol), H_2O_2 (0.6 mmol, 30% in water), TMDAI (20% mol), radial scavenger (BHT or 1,1-Diphenyethylene, 0.6 mmol) and water (1 mL). The mixture was stirred at 45 °C for 12 hours, and extracted with DCM (1 mL × 3). The combined organic phase was washed with brine and dried over anhydrous Na₂SO₄. After the solvent had been completely removed, the residue was purified by column chromatography on silica gel to give the product 3.

4.2 Effect of N-Substituents

Standard conditions: 4 (0.2 mmol), aniline (0.3 mmol), H₂O₂ (0.6 mmol, 30% in water), TMDAI (20% mol) inwater (1 mL) at 45 °C for 12 hours.

4.3 kinetics Isotope Effect (KIE)

Substrate **1a** (0.1 mmol, 27.3 mg), d-**1a** (0.1 mmol, 27.5 mmol), aniline (0.3 mmol), TMDAI (20 mol%, 0.04 mmol), H_2O_2 (30% aq, 3eq, 0.6 mmol) and H_2O (1mL) were added to a 5 mL tube. The mixture was stirred at 45 °C for 30 min and then extracted with DCM (3 × 1 mL), the combined organic layers were dried over Na₂SO₄, filtered and evaporated under vaccum. The residue was analyzed by ¹H NMR without futher purification. The ¹H NMR analysis showed that the ratio of **3a**

to d-3a was 1.6 :1 when compared with the standard ¹H NMR spectrum of 3a, in which the integration of the peak at 3.82 ppm was 0.62 instead of 1.

5. References

1. Green Chem., 2017, 19, 2076-2079.

6. NMR spectra of products

N-phenyl-1-tosylindolin-3-amine (3a)

5-methyl-*N*-phenyl-1-tosylindolin-3-amine (3b)

5-butyl-*N*-phenyl-1-tosylindolin-3-amine (3c)

S14

5-(tert-butyl)-N-phenyl-1-tosylindolin-3-amine (3d)

5-nitro-*N*-phenyl-1-tosylindolin-3-amine (3e)

5-fluoro-*N*-phenyl-1-tosylindolin-3-amine (3f)

5-chloro-N-phenyl-1-tosylindolin-3-amine (3g)

5-methoxy-N-phenyl-1-tosylindolin-3-amine (3h)

N-(4-fluorophenyl)-1-tosylindolin-3-amine (3i)

N-(4-bromophenyl)-1-tosylindolin-3-amine (3j)

N-(4-chlorophenyl)-1-tosylindolin-3-amine (3k)

N-(3-chlorophenyl)-1-tosylindolin-3-amine (3l)

N-(3-methoxyphenyl)-1-tosylindolin-3-amine (30)

N-(2-methoxyphenyl)-1-tosylindolin-3-amine (3p)

N-(4-butylphenyl)-1-tosylindolin-3-amine (3r)

N-(4-(tert-butyl)phenyl)-1-tosylindolin-3-amine (3s)

N-(naphthalen-1-yl)-1-tosylindolin-3-amine (3t)

N-benzyl-1-tosylindolin-3-amine (3u)

N-phenethyl-1-tosylindolin-3-amine (3v)