Supplementary Information

Repurposing Bacterial Extracellular Matrix for Selective and Differential Abstraction of Rare Earth Elements

Pei Kun R. Tay,^{1,2} Avinash Manjula-Basavanna¹ and Neel S. Joshi^{1,2}

 ¹ Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States of America
 ² School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States of America **Table S1.** Plasmid inserts used in this study.

Plasmid Name	Nucleotide Sequence of Insert	Comments
pET21d- P _{T7} :LBT2	GGTTCATCTGGTAGTGGCGGTTCGGGT <mark>TACATTGACA CTAATAACGATGGATGGATGAGGGAGGAGATGAGCTTTA CATTGACACGAACAATGATGGATGGATCGAAGGCGAC GAATTACTTGCGTAA</mark> TACATCATTTGTATTACAGAAA CAGGG	Gray = Flanking plasmid region in pET21d- $P_{T7}:\Delta BF$ Red = gene for CsgA-LBT2
pET21d- P _{T7} :LBT4	GGTTCATCTGGTAGTGGCGGTTCGGGT CCAATAACGACGGCTGGATCGAGGGGGGATGAATTATA CATCGACACAAACAATGATGGTTGGATCGAGGGAGAT GAGCTGTACATCGACACGAATAACGATGGGTGGATCG AAGGTGATGAGTTGTATATCGACACTAATAATGATGG TTGGATCGAAGGCGACGAATTG TAA TACATCATTTGT ATTACAGAAACAGGG	Gray = Flanking plasmid region in pET21d- $P_{T7}:\Delta BF$ Red = gene for CsgA-LBT4
pET21d- P _{T7} :LBT6	GGTTCATCTGGTAGTGGCGGTTCGGGT CAAACAATGACGGGTGGATCGAAGGGGACGAGTTATA TATCGACACAAACAACGACGGCTGGATTGAAGGCGAT GAGCTTTACATCGACACCAACGACGATGGATGGATCG AGGGGGATGAACTTTACATCGATACTAACAATGATGG ATGGATTGAGGGTGACGAGCTTTACATTGATACTAAC AATGATGGGTGGATTGAAGGTGATGAATTATATATCG ACACCAATAATGACGGATGGATTGAGGGCGATGAGTT GCTTGCC TAA TACATCATTGTATTACAGAAACAGGG	Gray = Flanking plasmid region in pET21d- P _{T7} :∆BF Red = gene for CsgA-LBT6
pET21d- P _{T7} :LBT2*	GGTTCATCTGGTAGTGGCGGTTCGGGT CTAATAATGGTGGTTGGATCGGGGGGGGGG	Gray = Flanking plasmid region in pET21d- $P_{T7}:\Delta BF$ Red = gene for CsgA-LBT2*
pET21d- P _{T7} :LBT4*	GGTTCATCTGGTAGTGGCGGTTCGGGT CGAATAACGGAGGGTGGATTGGCGGTGGCCTTTA CATTGGCACGAACAATGGTGGGGGGGATTGGAGGTGGA GGATTATATATCGGTACTAACAACGGAGGGTGGATTG GTGGGGGCGGTCTTTATATCGGGACAAACAACGGAGG ATGGATTGGCGGTGGTGGCCTGCTTGCG TAA TACATC ATTTGTATTACAGAAACAGGG	Gray = Flanking plasmid region in pET21d- $P_{T7}:\Delta BF$ Red = gene for CsgA-LBT4*

pET21d- P _{T7} :LBT6*	GGTTCATCTGGTAGTGGCGGTTCGGGT CCAATAATGGCGGATGGATCGGGGGGGGGG	Gray = Flanking plasmid region in pET21d- $P_{T7}:\Delta BF$ Red = gene for CsgA-LBT6*
	GTTGGCA TAA TACATCATTTGTATTACAGAAACAGGG	

Figure S1. Expression of CsgA containing various concatamers of LBT, as determined by a Congo Red pull-down assay and normalized to cell density. The corresponding LBT* variants have their acidic residues mutated to glycine. 2×- and 4×-LBT repeats expressed well relative to wt-CsgA, but a 6×-LBT variant showed significantly lower expression, which was partly alleviated by removing the charged residues.

Figure S2. Scanning electron micrographs showing similar extensive fiber meshes formed by wT-CsgA (a) and CsgA-LBT4 (b). The meshes were filter-immobilized onto 5 μ m polycarbonate membranes. Yellow and white arrows show filter membrane and curli fiber meshes respectively.

Figure S3. Binding of 200 μM Tb^{3+} to curli filters over time. Sorption was complete within 30 min.

Figure S4. Desorption of Tb^{3+} from CsgA-LBT4 filters over time with pH 2 nitric acid at room temperature. All bound Tb^{3+} was recovered within 30 min.

Figure S5. Scanning electron micrograph of CsgA-LBT4 filters before (a) and after (b) three cycles of sorption-desorption, showing that the immobilized fiber mats remained largely intact even after repeated acid washes.

Metal	Concentration (µM)
Ln ³⁺	100
Al ³⁺	1000
Ca ²⁺	10000
Cu ²⁺	1000
Fe ³⁺	1000
Ni ²⁺	10000

Table S2. Metal composition of simulated waste stream.

Figure S6. Ln³⁺ desorption from curli-LBT filters using a sequential series of acid washes. A proportionally larger amount of the lighter lanthanides (La, Ce) was eluted at higher pH due to their lower affinity to the LBTs.