Supporting information

The synthesis of atomic Fe embedded in bamboo-CNTs grown on

graphene as a superior CO₂ electrocatalyst

Huinian Zhang,^{a, b} Jie Wang,^{a, b} Zheng Zhao,^{a, b} Huifang Zhao,^{a, b} Miao Cheng,^{a, b} Anni Li,^a Congwei Wang,^a Junying Wang^{*, a} and Junzhong Wang^{**, a}

a CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

b University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Author: Junying Wang, E-mail: <u>wangjy@sxicc.ac.cn</u>;

**Corresponding Author: Junzhong Wang, E-mail: wangjz@sxicc.ac.cn.

Chemicals and materials

Graphite paper (99.95%, Qingdao Huarun Graphite Co., Ltd.), 1-buty-3methylimidazolium Tetrachloroferrate ([BMIM]FeCl₄) (98%, Linzhou Keneng Materials Technology Co., Ltd), hydrochloric acid (HCl, 37%), sulfuric acid (H₂SO₄, 18 mol/L), melamine (Sinopharm Chemical Reagent Co., Ltd.) Nafion solution (5 wt%) and Nafion 117 membrane were supplied by Alfa Aesar, carbon paper (Toray TGP-H-060, Toray Industries Inc).

Additional Figures

Fig. S1 TEM images of the samples of Fe/G that was prepared by electrochemical process of atomic Fe into graphene in the ionic liquid [BMIM]FeCl₄. (a, b) before washing with HCl, (c, d) after washing with HCl, (e, f) HRTEM images of Fe/G after washing with HCl (inset: EELS atomic spectrum of the Fe element of marked area in (e)).

Fig. S2 TEM images of control samples: (a, b) Fe-N/bC, (c, d) Fe-N-G, (e, f) G-N.

Fig. S3 HAADF-STEM analysis of Fe-N-G/bC catalyst. Atomic Fe was clearly observed in graphene nanosheet.

Fig. S4 N_2 adsorption-desorption isotherms and its pore size distribution (right) of Fe-N-G/bC compared with control sample prepared without using graphene: (a, b) Fe-N-G/bC and (c, d) Fe-N/bC.

Fig. S5 TGA spectra in air of (a) Fe-N-G/bC compared with control sample (b) Fe-N/bC prepared without using graphene.

Fig. S6 XRD patterns of Fe-N-G/bC sample synthesized with the graphene electrodeposited by atomic Fe as the starting material and control sample synthesized with blain graphene as the starting material without electrochemical processing. ((a) black line: control sample; (b) red line: Fe-N-G/bC sample).

Fig. S7 XPS spectra of Fe-N-G/bC catalyst compared with control samples. (a) XPS full spectra of Fe-N-G/bC compared to G-N, Fe-N-G and Fe-N/bC, (b) XPS spectra of

Fe2p peaks with the deconvolution, (c) XPS spectra of N1s peaks with the deconvolution.

Table S1 Atomic ratios (at. %) of C, N, Fe and O elements in G-N, Fe-N-G, Fe-N/bC and Fe-N-G/bC based on XPS analysis.

Sample	C content (at%)	N content (at%)	Fe content (at%)	O content (at%)
G-N	90.85%	4.20%	-	4.94%
Fe-N-G	91.95%	2.35%	0.33%	5.37%
Fe-N/bC	90.44%	2.82%	0.38%	6.37%
Fe-N-G/bC	94.47%	2.30%	0.52%	2.70%
FePc	75.71%	15.45%	3.54%	5.29%

Table S2 Atomic contents of pyridinic N, Fe-N_x , graphitic N, quaternary N and oxidized N based on fine scan of N 1s of XPS.

Sample	Pyridinic N (at%)	Fe-Nx (at%)	Graphitic N (at%)	Quaternary N (at%)	Oxidized N (at%)
G-N	2.08%	-	0.90%	0.87%	0.35%
Fe-N-G	0.80%	0.73%	0.31%	0.16%	0.34%
Fe-N/bC	0.83%	1.10%	0.35%	0.31%	0.22%
Fe-N-G/bC	0.81%	1.00%	0.19%	0.15%	0.14%
FePc	14.03%	1.42%	-	-	-

Fig. S8 FE of H_2 at different potentials on Fe-N-G/bC, Fe-N/bC, Fe-N-G and G-N catalysts.

Table S3 Comparison data of the CO₂RR catalytic performances of various materials reported in the literature (references listed in the following) with this work of Fe-N-G/bC catalysts.

Catalyst	Electrolyte	Maximum FE _{CO}	Experimental conditions	overpotential	Reference
Fe-N-G/bC	0.1 M KHCO ₃	95.8%	-1.3 V (SCE)	-0.55 V	This work
Fe-N-G/bC	0.1 M KHCO ₃	84.3%	-1.2 V (SCE)	-0.45 V	This work
NCNT	0.1 M KHCO ₃	80%	-0.8 V (RHE)	-0.69 V	[1]
NCNT-3-700	0.5 M NaHCO ₃	90%	-0.9 V (RHE)	-0.79 V	[2]
NG	0.1 M KHCO ₃	85%	-0.58 V (RHE)	-0.47 V	[3]
Fe-N-C	0.1 M NaHCO ₃	91%	-0.60 V (RHE)	-0.49 V	[4]
Fe-N-C	0.1 M KHCO ₃	80%	-0.60 V (RHE)	-0.49 V	[5]
Ni-N-G	0.1 M KHCO ₃	90%	-0.70 V (RHE)	-0.59 V	[6]

Fig. S9 Comparison of the CO_2RR catalytic performances of various materials reported in the literature (references listed in the following) with this work of Fe-N-G/bC catalysts.

Fig. S10 The high-resolution HAADF-STEM images of Fe-N-G/bC catalyst after durability test for 12 h: (a) atomic Fe on the graphene and (b) atomic Fe in both the

nanotubes walls and the interior of the bC; (c) XPS spectra of Fe-N-G/bC catalyst after durability test for 12 h: XPS spectra of N1s peaks with the deconvolution and (d) XPS spectra of Fe2p peaks with the deconvolution.

Fig. S11 TEM images of Fe-N-G/bC catalyst synthesized with different mass ratios of graphene and ionic liquid [BMIM]FeCl₄ (G/IL) in the starting material (a) 1/10 and (b) 1/40; XPS spectra of Fe-N-G/bC catalyst with different G/IL ratios, (c, d) XPS spectra of (c) survey and (d) N1s with the deconvolution.

Table S4 Atomic ratio (at%) of C, N, Fe and O elements in Fe-N-G/bC with different mass ratios of graphene and ionic liquid (G/IL) in the starting material based on XPS analysis.

Sample	C content (at%)	N content (at%)	Fe content (at%)	O content (at%)
1/10	94.56%	2.04%	0.43%	2.97%
1/20	94.48%	2.30%	0.52%	2.70%
1/40	93.35%	3.14%	0.68%	2.83%

Sample	Pyridinic N (at%)	Fe-Nx (at%)	Graphitic N (at%)	Quaternary N (at%)	Oxidized N (at%)
1/10	0.89%	0.62%	0.11%	0.19%	0.23%
1/20	0.81%	1.00%	0.19%	0.15%	0.14%
1/40	1.12%	1.05%	0.39%	0.34%	0.23%

Table S5 Atomic contents of pyridinic N, Fe- N_x , graphitic N, quaternary N and oxidized N based on fine scan of N 1s of XPS.

Fig. S12 FE of CO at different potentials of Fe-N-G/bC electrode with different mass ratios (1/10, 1/20 and 1/40) of graphene and ionic liquid (G/IL) in the starting material.

References for Table S3 and Fig. S9

- J. J. Wu, R. M. Yadav, M. J. Liu, P. P. Sharma, C. S. Tiwary, L. L. Ma, X. L. Zou, X. D. Zhou, B. I. Yakobson, J. Lou and P. M. Ajayan, *ACS Nano*, 2015, 9, 5364-5371.
- J. Y. Xu, Y. H. Kan, R. Huang, B. S. Zhang, B. L. Wang, K. H. Wu, Y. M. Lin, X. Y. Sun, Q. F. Li, G. Centi and D. S. Su, *ChemSusChem*, 2016, 9, 1085-1089.
- J. J. Wu, M. J. Liu, P. P. Sharma, R. M. Yadav, L. L. Ma, Y. C. Yang, X. L. Zou, X. D. Zhou, R. Vajtai, B. I. Yakobson, J. Lou and P. M. Ajayan, *Nano Lett.* 2016, 16, 466-470.

- 4. T. N. Huan, N. Ranjbar, G. Rousse, M. Sougrati, A. Zitolo, V. Mougel, F. Jaouen and M. Fontecave, *ACS Catal.*, 2017, 7, 1520-1525.
- 5. A. S. Varela, N. R. Sahraie, J. L. Steinberg, W. Ju, H. S. Oh and P. Strasser, *Angew. Chem. Int. Ed.*, 2015, **54**, 10758-10762.
- P. P. Su, K. Iwase, S. J. Nakanishi, K. Hashimoto and K. Kamiya, *Small*, 2016, 12, 6083-6089.