#### Supplementary Information (SI) for

# Analysis of gas chromatography/mass spectrometry data for catalytic lignin depolymerization using positive matrix factorization

Yu Gao,<sup>‡a</sup> Michael J. Walker,<sup>‡a</sup> Jacob A. Barrett,<sup>b</sup> Omid Hosseinaei,<sup>c</sup> David P. Harper,<sup>d</sup> Peter C. Ford,<sup>b</sup> Brent J. Williams<sup>a</sup> and Marcus B. Foston<sup>\*a</sup>

<sup>a</sup>Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis MO, 63130, USA. \*Email: mfoston@wustl.edu

<sup>b</sup>Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara CA, 93106-9510, USA.

°RISE Bioeconomy, PO Box 5604, 11486 Stockholm, Sweden

<sup>d</sup>Center for Renewable Carbon, University of Tennessee, Knoxville, Knoxville TN, 37996, USA

### Table of Contents

## **Experimental Procedures:**

- Lignin extraction
- Catalyst synthesis
- GC-TCD analysis on gas products
- GPC analysis on non-GC-detectable products
- TGA analysis on solid products
- Quantitative <sup>31</sup>P NMR
- Quantitative <sup>13</sup>C NMR
- $^{13}C$   $^{1}H$  (HSQC) NMR
- Nitric acid digestion

### Figures:

- **Figure S1.**  $Q/Q_{exp}$  values for the 2-18 factor solutions obtained using PMF.
- Figure S2-S14. A) PMF-reconstructed Factor 1-13 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 1-13 mass spectrum. C) Factor 1-13 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 1-13 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 1-13 average chromatograms for product samples from the combination of all reaction conditions.
- **Figure S15.** Average TIC for all 30 binned chromatograms (black, i.e. input data for factor analysis), the summed chromatograms resulting from the 13 factor PMF solution (red), and the summed chromatograms resulting from the 13 factor NMF solution (blue).
- Figure S16. <sup>13</sup>C <sup>1</sup>H (HSQC) NMR spectra of untreated MS and MIS lignin.
- Figure S17. Carbon balance of all liquid and solid products from MS/MIS lignin depolymerization in non-catalyzed, MeOH, and MeOH/DMC conditions for 1-9 h.
- **Figure S18.** Yields of gas in mmol from MS/MIS depolymerization in non-catalyzed, MeOH, and MeOH/DMC conditions for 1-9 h.

### Tables:

- **Table S1.** GC-MS detected peak assignments for compounds in samples from MS/MIS lignin depolymerization in non-catalyzed, MeOH, and MeOH/DMC conditions for 1-9.
- **Table S2.** List of major characteristic *m/z* values.
- **Table S3.** Distribution of hydroxyl group contents (mmol/g) based on quantitative <sup>31</sup>P NMR data for untreated MS and MIS lignin.
- **Table S4.** Distribution of carbons functional group contents (percent) based on quantitative <sup>13</sup>C NMR data for untreated MS and MIS lignin.
- **Table S5.** GPC detected number-average molecular weight (M<sub>n</sub>), weighted-average molecular weight (M<sub>w</sub>), and polydispersity index (PDI) of untreated and depolymerized MS lignin in non-catalyzed, MeOH, and MeOH/DMC conditions for 1-9 h.
- **Table S6.** GPC detected M<sub>n</sub>, M<sub>w</sub>, and PDI of untreated and depolymerized MIS lignin in non-catalyzed, MeOH, and MeOH/DMC conditions for 1-9 h.

#### **Experimental Procedures.**

**Lignin extraction.** Pulp grade chips (about 4 cm<sup>2</sup> and thicknesses of 0.5-1 cm) of hybrid poplar (Populus spp.) were used for organosolv fractionation. The biomass sample was treated in a flowthrough reactor with a 16:34:50 wt% mixture of methyl isobutyl ketone (MIBK), ethanol, and water. Sulfuric acid (0.05 M) was used as catalyst and fractionation performed at a temperature of 150 °C for 120 min. The black liquor fraction containing dissolved lignin and hemicellulose was separated into a hemicellulose rich aqueous phase and a lignin rich organic phase by adding solid NaCl (10 g per 100 mL of deionized water in the initial solvent mixture) in a separation funnel. After observation of phase separation between the aqueous and organic phases, the aqueous phase that rests at the bottom of the separatory funnel was drained. The organic phase was washed twice by adding 30% v/v deionized water to remove residual sugars and ethanol from the organic phase. Lignin from organic phase phases was isolated by rotary evaporation, followed by trituration of the solid residue with diethyl ether (5 times ~200 mL) and final washing with deionized water (3 L deionized water, room temperature, 12 h). The final lignin was filtered through a paper filter and dried in a vacuum oven at temperature of 80°C for 12 h. Organosolv lignin samples were extracted with methanol at room temperature and solid to liquid ratio of 1:10. Extraction was for about 15 h and then the solution was filtered under vacuum. Methanol insoluble fraction recovered as solid on the filter paper and methanol soluble fraction isolated by rotary evaporation of the filtrates. All lignin samples were dried in a vacuum oven at temperature of 80 °C for 12 h.

**Catalyst synthesis.** A solution of 250 mL deionized water containing Mg(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (30.8 g, 0.12 mol), Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O (7.25 g, 0.03 mol), and Al(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (18.76 g, 0.05 mol), was slowly added to a Na<sub>2</sub>CO<sub>3</sub> buffer (5.3 g, 0.05 mol in 375 mL) at 65 °C with vigorous stirring. The pH of the mixture was maintained at approximately 10 by alternating aliquots of 1 M NaOH to the reaction mixture. After the addition of the metal solution was complete, the reaction slurry was stirred overnight. The light blue precipitate was isolated by filtration and washed with a sodium carbonate solution (0.05 mol in 1 L distilled water) for a minimum of four hours, then filtered and washed with deionized water. The precipitate was dried overnight at 110 °C resulting in Cu<sub>20</sub>HTC.<sup>4</sup>

**GC-TCD analysis.** To quantify the gas contents, 100  $\mu$ L of raw gas products was manually injected into the gas chromatography system (GC, 7890B, Agilent Technologies) with thermal conductivity detector (TCD). Inlet temperature was set to 250 °C. Supelco Carboxen-1010 PLOT column (ID: 0.32 mm, average thickness: 15  $\mu$ m, and length: 30 m) was used with an isotherm method at 75 °C for 10 mins. Helium was used as a carrier gas. Gas products were identified and quantified by the standard gas mixture comprising CO, CO<sub>2</sub>, H<sub>2</sub>, N<sub>2</sub>, and O<sub>2</sub> in helium (custom-mixed by scott specialty gases, Plumsteadville, PA).

**GPC analysis.** GPC analysis was performed to determine the molecular weight distribution of the liquid products. In a Waters e2695 system with a 2489 UV detector (260 nm), a three-column sequence of WatersTM Styragel columns (HR0.5, HR1, and HR3) was used for the analysis. Tetrahydrofuran (THF) was used as eluent, and the flow rate was 1.0 ml/min. 1 mL of raw liquid product was first filtered to a 2 mL HPLC vial through a 0.45- $\mu$ m nylon membrane filter, and 50  $\mu$ L of this sample was injected into the instrument. Molecular weights (M<sub>n</sub> and M<sub>w</sub>) were calibrated against a polystyrene calibration curve. A calibration curve was constructed by fitting a third-order polynomial equation to the retention volumes obtained from six narrow polystyrene standards and two small molecules (diphenylmethane and toluene) ranging in molecular weight from 92 to 3.4 × 104 g/mol. The curve fit had an R<sup>2</sup> value of 0.99.

**Thermal gravimetric analysis.** Gravimetric analysis was conducted on the solids residues after dioxane washes. The thermogravimetric analyses were carried out in a Q5000 TGA instrument

(TA instrument).  $\sim$ 5-10 mg dry solid samples were placed onto a platinum TGA pan. Furnace was programed to heat to 900 °C in 2 mins with air (ultrazero grade) flowrate of 10 L/h and nitrogen flowrate of 25 L/h. Furnace was held at 900 °C for additional 10 mins until no further changes in sample weight observed. Weight loss percentages were recorded to calculate the catalyst content in the solid residues.

**Quantitative** <sup>31</sup>P NMR. <sup>31</sup>P NMR was performed after derivatization of the untreated MS and MIS lignin with 2–chloro– 4,4,5,5–tetramethyl–1,3,2–dioxaphospholane (TMDP). N-Hydroxy-5-norbornene-2,3-dicarboxylic acid imide and chromium (III) acetylacetonate were used as an internal standard and a relaxation agent, respectively. The quantitative <sup>31</sup>P NMR spectra were recorded using a Varian 400-NMR spectrometer at frequency of 162 MHz using a 90° pulse angle, 25 s pulse delay, and 256 transients at room temperature.

**Quantitative** <sup>13</sup>C **NMR.** For quantitative <sup>13</sup>C NMR spectroscopy, 150 mg of lignin was dissolved in 0.75 mL of DMSO-d<sub>6</sub>. Chromium (III) acetylacetonate were used as relaxation agent (0.01 M). An inverse-gated decoupling pulse sequence was used with a 90° pulse angle, 1.7 s relaxation delay and an acquisition time of 1.40 s. A total of 20,000 scans were recorded.

<sup>13</sup>C <sup>1</sup>H (HSQC) NMR. HSQC NMR was carried out using a Varian 400-MR spectrometer operating at frequency of 399.78 MHz for proton and 100.54 MHz for carbon. For 2D (HSQC) spectroscopy, 100 mg of lignin were dissolved in 0.75 mL of DMSO-d6. NMR spectra were recorded at 25°C using the (HC)bsgHSQCAD pulse program. The experiment used 32 transients and 512 time increments in the <sup>13</sup>C dimension. A 90° pulse with a pulse delay of 1.5 s, an acquisition time of 0.15 s and a <sup>1</sup>J<sub>CH</sub> of 147 Hz were employed. DMSO was used as an internal reference.

**Nitric acid digestion.** Solid residues from depolymerization were treated with 5 ml of 70% HNO<sub>3</sub> at room temperature for 16 h. Mixture was heated to 50 °C for another hour, then, cooled to room temperature. Leftover solids (Char) were recovered by filtration through glass fiber filters. Leftover solids were washed with excessive amount of water DI water for three time and then dried for gravimetric analysis.





Figure S1.  $Q\!/\!Q_{exp}$  values for the 2-18 factor solutions obtained using PMF.



**Figure S2.** Factor 1 is defined by compounds that generate mass spectral fragments that are less polar and/or more volatile aromatics (13-factor solution). A) PMF-reconstructed Factor 1 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 1 mass spectrum. C) Factor 1 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 1 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 1 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database mostly with more than 90 % matching.



**Figure S3.** Factor 2 is defined by compounds that generate mass spectral fragments that are air and light molecular weight contaminates (13-factor solution). A) PMF-reconstructed Factor 2 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 2 mass spectrum. C) Factor 2 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 2 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 2 average chromatograms for product samples from the combination of all reaction conditions.



**Figure S4**. Factor 3 is defined by compounds that generate mass spectral fragments that are less polar and/or more volatile aromatics (13-factor solution). A) PMF-reconstructed Factor 3 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 3 mass spectrum. C) Factor 3 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 3 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 3 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database mostly with more than 90 % matching.



**Figure S5.** Factor 4 is defined by compounds that generate mass spectral fragments that are aliphatics (13-factor solution). A) PMF-reconstructed Factor 4 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 4 mass spectrum. C) Factor 4 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 4 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 4 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database with average 56 % matching.



**Figure S6.** Factor 5 is defined by compounds that generate mass spectral fragments that are carboxylates (13-factor solution). A) PMF-reconstructed Factor 5 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 5 mass spectrum. C) Factor 5 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 5 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 5 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database mostly with more than 90 % matching.



**Figure S7.** Factor 6 is defined by compounds that generate mass spectral fragments that are benzoates (13-factor solution). A) PMF-reconstructed Factor 6 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 6 mass spectrum. C) Factor 6 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 6 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 6 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database mostly with more than 90 % matching.



**Figure S8.** Factor 7 is defined by compounds that generate mass spectral fragments that are more polar and/or less volatile aromatics (13-factor solution). A) PMF-reconstructed Factor 7 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 7 mass spectrum. C) Factor 7 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 7 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 7 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database mostly with more than 70 % matching.



**Figure S9.** Factor 8 is defined by compounds that generate mass spectral fragments that are dimethoxy benzyls (13-factor solution). A) PMF-reconstructed Factor 8 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 8 mass spectrum. C) Factor 8 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH (DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 8 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 8 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database mostly with more than 90 % matching.



**Figure S10.** Factor 9 is defined by compounds that generate mass spectral fragments that are methoxy phenyls (13-factor solution). A) PMF-reconstructed Factor 9 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 9 mass spectrum. C) Factor 9 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 9 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 9 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database mostly with more than 90 % matching.



**Figure S11.** Factor 10 is defined by compounds that generate mass spectral fragments that are trimethoxy benzyls (13-factor solution). A) PMF-reconstructed Factor 10 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 10 mass spectrum. C) Factor 10 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH (DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 10 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 10 average chromatograms for product samples from the combination of all reaction conditions. Individual compound structures identified in (D) were verified by Palisade Complete Mass Spectral Database mostly with more than 90 % matching.



**Figure S12.** Factor 11 is defined by compounds that generate mass spectral fragments that are unresolved complex mixtures (13-factor solution). A) PMF-reconstructed Factor 11 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 11 mass spectrum. C) Factor 11 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 11 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 11 average chromatograms for product samples from the combination of all reaction conditions.



**Figure S13.** Factor 12 is defined by compounds that generate mass spectral fragments that are column bleed residues (13-factor solution). A) PMF-reconstructed Factor 12 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 12 mass spectrum. C) Factor 12 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 12 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 12 average chromatograms for product samples from the combination of all reaction conditions.



**Figure S14.** Factor 13 is defined by compounds that generate mass spectral fragments that are column bleed residues (13-factor solution). A) PMF-reconstructed Factor 13 average chromatograms for product samples from catalyzed reactions in MeOH/DMC (green), catalyzed reactions in MeOH (blue), and non-catalyzed reactions in MeOH (black). B) The Factor 13 mass spectrum. C) Factor 13 abundance in the product samples generated from non-catalyzed reactions in MeOH (MC), catalyzed reactions in MeOH (MeOH), and catalyzed reactions in MeOH/DMC (DMC) each undergoing reaction for 1, 2, 3, 6, and 9 h. The Factor 13 abundance is shown for the product generated from methanol-soluble (MS; red) and methanol-insoluble (MIS; blue) fraction of lignin extracted from a hybrid poplar biomass source. D) PMF-reconstructed Factor 13 average chromatograms for product samples from the combination of all reaction conditions.



**Figure S15.** Average TIC for all 30 binned chromatograms (black, i.e. input data for factor analysis), the summed chromatograms resulting from the 13 factor PMF solution (red), and the summed chromatograms resulting from the 13 factor NMF solution (blue).



**Figure S16.** <sup>13</sup>C <sup>1</sup>H HSQC NMR spectra of untreated MS and MIS lignin: (A)  $\beta$ –O–4' aryl ether, (B) phenylcoumaran, (C) resinol, and (D) spirodienone linkages; (OMe) methoxyl groups; and (S) syringyl, (G) guaiacyl, (S<sub>ox</sub>)  $\alpha$ -oxidized syringyl, (G<sub>ox</sub>)  $\alpha$ -oxidized guaiacyl, (H) *p*-hydroxyphenyl, and (PB) *p*-hydroxybenzoate monomers.



**Figure S17.** Carbon balance of all liquid and solid products from MS/MIS lignin depolymerization for non-catalyzed (A), MeOH (B), and MeOH/DMC (C) conditions for 1-9 h.



**Figure S18.** Yields of gas in mmol from MS/MIS lignin depolymerization in non-catalyzed, MeOH, and MeOH/DMC conditions for 1-9 h.

## Tables.

**Table S1.** GC-MS detected peak assignments for compounds in samples from MS/MIS lignin depolymerization in non-catalyzed, MeOH, and MeOH/DMC conditions for 1-9 h. Assignments are based on mass spectral database searches using the Palisade Complete Mass Spectral Database (600 K edition, Palisade Mass Spectrometry, Ithaca, NY)

| Number Compound List |                                        | Retention<br>Time (min) | Matching<br>% |
|----------------------|----------------------------------------|-------------------------|---------------|
| 1                    | hydroxy acetic acid methyl ester       | 2.21                    | 63            |
| 2                    | 1-propanol                             | 2.267                   | 90            |
| 3                    | 1-butanol                              | 2.385                   | 18            |
| 4                    | formic acid ethyl ester                | 2.396                   | 28            |
| 5                    | 2-butanol                              | 2.561                   | 83            |
| 6                    | 2,2-dimethoxy propane                  | 2.7                     | 86            |
| 7                    | tetrahydro-6,6-dimethyl-2H-Pyran-2-one | 2.836                   | 78            |
| 8                    | 1-butanol                              | 2.857                   | 83            |
| 9                    | 3-buten-1-ol                           | 2.965                   | 68            |
| 10                   | 1-ethoxy-2-propanol                    | 3.18                    | 78            |
| 11                   | 2-methoxy ethanol                      | 3.351                   | 81            |
| 12                   | benzoic acid, 3-pyridyl ester          | 3.652                   | 23            |
| 13                   | 1,2-butylene glycol                    | 3.845                   | 72            |
| 14                   | trimethoxy methane                     | 4.296                   | 78            |
| 15                   | 3-methoxy-1-butanol                    | 4.393                   | 72            |
| 16                   | 3-pentanol                             | 4.415                   | 74            |
| 17                   | 3-heptanol                             | 4.457                   | 45            |
| 18                   | 2,2-dimethyoxybutane                   | 4.51                    | 76            |
| 19                   | 2-methylbutan-1-ol                     | 4.682                   | 59            |
| 20                   | 2-(2-methoxyethoxy) ethanol            | 4.822                   | 40            |
| 21                   | 1,2,3-trimethyl cyclopentene           | 4.854                   | 93            |
| 22                   | 4-methyl-2-pentanone                   | 5.026                   | 64            |
| 23                   | 1,4-dioxane                            | 5.06                    | 96            |
| 24                   | toluene                                | 5.423-5.477             | 94            |
| 25                   | 2-(2-ethoxyethaoxy) ethanol            | 5.61                    | 64            |
| 26                   | alpha-methyl-1,4-benzenedimethanol     | 5.981                   | 50            |
| 27                   | trans-2,5,5-trimethyl-1,3-hexadiene    | 6.175                   | 83            |
| 28                   | isopropyl butanoate                    | 6.42                    | 38            |
| 29                   | 3,5,5-trimethyl cyclohexene            | 6.475                   | 43            |
| 30                   | trans-2,5,5-trimethyl-1,3-hexadiene    | 6.507                   | 49            |
| 31                   | 1,3-dimethyl-2-methylene cyclohexane   | 6.69                    | 43            |
| 32                   | methoxy acetic acid, methyl ester      | 6.883                   | 86            |
| 33                   | propyl hydrazine                       | 6.905                   | 83            |
| 34                   | 3-hexanol                              | 7.141                   | 64            |

| 35  | 1,1-dimethoxy ethane                                | 7.13        | 78      |
|-----|-----------------------------------------------------|-------------|---------|
| 36  | 1,2-butanediol                                      | 7.152       | 76      |
| 37  | 5-methyl-3-hexanone                                 | 7.227       | 49      |
| 38  | 1,1-dimethoxy-2-propanone                           | 7.31        | 93      |
| 39  | methyl dimethoxyacetate                             | 7.699       | 9       |
| 40  | cis-2-methyl-cyclopentanol                          | 7.946       | 90      |
| 41  | 2-hexen-1-ol                                        | 7.989       | 35      |
| 42  | xylene                                              | 8.249-8.281 | 88      |
| 43  | 5-methyl-2-(1-methylethyl) cyclohexanol             | 8.944       | 53      |
| 44  | carbamic acid, methyl ester                         | 9.009       | 43      |
| 45  | 4-methyl -1-heptene                                 | 9.127       | 59      |
| 46  | 1-heptyne                                           | 9.138       | 56      |
| 47  | 1- butanol                                          | 9.148       | 9       |
| 48  | vinyl-2-(ethoxy)ethyl ether                         | 9.32        | 45      |
| 49  | 20ctyl cyclopropanetetradecanoic acid, methyl ester | 9.331       | 40      |
| 50  | heptadecane                                         | 9.395       | 50      |
| 51  | 1,1,3-trimethoxypropane                             | 9.535       | 50      |
| 52  | cyclohexanol                                        | 9.631       | 76      |
| 53  | 4,5-diethyl-1,2-dimethyl cyclohexene                | 9.642       | 83      |
| 54  | 2,5-dimethyl-2-(1-methylethenyl) cyclohexanone      | 9.653       | 64      |
| 55  | cyclohexanol                                        | 9.685       | 50      |
| 56  | Furfural                                            | 10.05       | 87      |
| 57  | 1,3-pentadiene                                      | 10.157      | 72      |
| 58  | 2,3-dimethyl-3-undecanol                            | 10.372      | 42      |
| 59  | 1,6-hexanediol                                      | 10.383      | 42      |
| 60  | pantolactone                                        | 10.48       | 53      |
| 61  | 3-hydroxy-3-methylpent-4-enal                       | 10.49       | 53      |
| 62  | 3,5-dimethyl cyclohexanol                           | 10.608      | 38      |
| 63  | d-siomenthol                                        | 10.63       | 40      |
| 64  | propane                                             | 10.705      | 4       |
| 65  | 4-pentenal                                          | 10.747      | 59      |
| 66  | 2-methyl cyclohexanol                               | 10.834      | 95      |
| 67  | 2,6-dimethyl-2-heptanol                             | 10.89       | 68      |
| 68  | trans-2-methyl cyclohexanol                         | 11.016      | 91      |
| 69  | 4-methyl cyclohexanol                               | 11.145      | 50      |
| 70  | 4-methylcyclohexene                                 | 11.242      | 50      |
| 71  | methoxy benzene                                     | 11.361-     | 97      |
| / 1 |                                                     | 11.414      | <i></i> |
| 72  | 1-cyclopropyl-2-propen-1-one                        | 11.321      | 53      |
| 73  | isopropenyl allyl acetylene                         | 11.381      | 9       |
| 74  | 1.4-cyclohexanedimethanol                           | 11.457      | 47      |
| 75  | l-heptyne                                           | 11.542      | 59      |
| 76  | trimethoxymethane                                   | 11.56       | 50      |

| 77  | butanoic acid, 4-methoxy, methyl ester         | 11.735 | 64 |
|-----|------------------------------------------------|--------|----|
| 78  | 2,2-dimethylcyclohexanone                      | 11.8   | 64 |
| 79  | 4-methyl-1-heptanol                            | 11.811 | 50 |
| 80  | (S)-2-hexen-4-ol                               | 11.832 | 50 |
| 81  | 3-acetyl-2,6-heptanedione                      | 12.047 | 53 |
| 82  | methoxy cyclheptane                            | 12.122 | 43 |
| 83  | 3-penten-2-ol                                  | 12.133 | 52 |
| 84  | 3,4-dimethylcyclohexanol                       | 12.143 | 50 |
| 85  | 2,4-dimethylcyclohexanol                       | 12.24  | 64 |
| 86  | 4-oxo-5-methoxy-2-penten-5-olide               | 12.39  | 94 |
| 87  | 3-methylpent-2-ene-1,5-diol                    | 12.466 | 36 |
| 88  | 4-pentenal                                     | 12.466 | 25 |
| 89  | 3,3-dimethyl cyclohexanol                      | 12.476 | 46 |
| 90  | 2-methyl propanoic acid pentyl ester           | 12.51  | 63 |
| 91  | 1-hexene                                       | 12.906 | 49 |
| 92  | 1-ethoxy-octane                                | 13.067 | 47 |
| 93  | 2-methyl-3-pentanol                            | 13.174 | 47 |
| 94  | E-1,5,9-decatriene                             | 13.271 | 64 |
| 95  | 1,2-dimethyl-cyclopent-2-enecarboxylic acid    | 13.464 | 42 |
| 96  | 2-methyl-1-octene                              | 13.582 | 47 |
| 97  | 3,3,4-trimethylcyclohexanone                   | 13.593 | 53 |
| 98  | 4-pentenal                                     | 3.603  | 49 |
| 99  | phenol                                         | 13.79  | 99 |
| 100 | 1-methoxy-2-methylbenzene                      | 14.012 | 93 |
| 101 | 2-heptenal                                     | 14.022 | 50 |
| 102 | phenol acetate                                 | 14.087 | 43 |
| 103 | 2-methyl-2-oxiranyl-cyclobutanone              | 14.108 | 53 |
| 104 | 2-methyl-1-buten-3-yne                         | 14.376 | 53 |
| 105 | 1-methoxy-4-methylbenzene                      | 14.444 | 99 |
| 106 | methyl furoate                                 | 14.473 | 38 |
| 107 | 3-methyl cyclohexene                           | 14.677 | 50 |
| 108 | 1,5-heptadiene                                 | 14.806 | 38 |
| 109 | 1-tetradecanol                                 | 15.01  | 80 |
| 110 | 15-tetracosenoic acid, methyl ester            | 15.03  | 80 |
| 111 | 2-hexenal                                      | 15.074 | 59 |
| 112 | 4-pentyn-1-ol                                  | 15.106 | 49 |
| 113 | 4-oxo-pentanoic acid, methyl ester             | 15.139 | 80 |
| 114 | 2-ethyl hydrazinecarboxylic acid, methyl ester | 15.18  | 78 |
| 115 | 2-methyl-1-pentene                             | 15.214 | 46 |
| 116 | 1H-pyrrole-2,5-dione                           | 15.41  | 39 |
| 117 | 2,3-bis(methylene)-1,4-butanediol              | 15.439 | 45 |
| 118 | 1(2-methylbutyl) cyclopentane                  | 15.461 | 42 |

| 119 | dodecanal                                                           | 15.482  | 47  |
|-----|---------------------------------------------------------------------|---------|-----|
| 120 | 2-ethoxy-2-(2-furyl)ethanol                                         | 15.6    | 43  |
| 121 | 2-isopropyl-5-methyl-1-heptanol                                     | 15.622  | 38  |
| 122 | bis(2-butoxyethyl) ether                                            | 15.76   | 40  |
| 123 | 2-methyl phenol                                                     | 16.03   | 98  |
| 124 | 4-methyl phenol                                                     | 16.083  | 97  |
| 125 | butanedioic acid dimethyl ester                                     | 16.126- | 83  |
| 123 |                                                                     | 16.169  | 05  |
| 126 | butanedioic acid, dimethyl ester                                    | 16.158  | 83  |
| 127 | (2,4,6-trimethylcyclohexyl) methanol                                | 16.255  | 38  |
| 128 | 2-heptyne                                                           | 16.341  | 58  |
| 129 | 3-heptadecenal                                                      | 16.352  | 47  |
| 130 | 3,3,5-trimethyl cyclohexanol                                        | 16.577  | 35  |
| 131 | 4,4-dimethoxy-butanoic acid, methyl ester                           | 16.599  | 48  |
| 132 | 5,5-dimethoxy-3-methyl-2-penten-3-ol                                | 16.61   | 50  |
| 133 | 4-methylphenol                                                      | 16.695- | 96  |
| 134 | 2 4-dimethylanisole                                                 | 16 805  | 96  |
| 135 | 2 3-dimethylanisole                                                 | 16 846  | 86  |
| 136 | 4-oxo-pentanoic ethyl ester                                         | 17.08   | 38  |
| 137 | n-cumenol                                                           | 17 157  | 56  |
| 138 | hentyl isobutyl ketone                                              | 17 189  | 93  |
| 139 | 3-(1-methylethyl)-phenol                                            | 17 21   | 86  |
| 140 | 1-methyl-1-(2-methyl-2-propenyl) cyclopentane                       | 17.221  | 68  |
| 141 | 3-cyclopropylcarbonyloxydodecane                                    | 17.297  | 47  |
| 142 | 2-penten-1-ol                                                       | 17.38   | 47  |
| 143 | 2-methyl-2-cyclopenten-1-one                                        | 17.49   | 49  |
| 144 |                                                                     | 17.576- | 0.0 |
| 144 | Benzoic acid, metnyi ester                                          | 17.623  | 98  |
| 145 | 2,6-dimethyl phenol                                                 | 17.704  | 97  |
| 146 | 2-methoxy phenol                                                    | 17.741  | 96  |
| 147 | 2-methylene cyclohexanol                                            | 17.94   | 70  |
| 148 | 3,3-dimethyl-2-methylene-4,7-oxo-<br>cyclopentane[a]cyclohept-5-ene | 18.07   | 52  |
| 149 | 5-hexyl-2-furaldehyde                                               | 18.112  | 46  |
| 150 | (1,3-dimethyl-2-methylene-cyclopentyl) methanol                     | 18.145  | 48  |
| 151 | 9-octadecen-1-ol                                                    | 18.25   | 47  |
| 152 | 1-dodecanol                                                         | 18.37   | 38  |
| 153 | 3-butyn-1-ol                                                        | 18.424  | 62  |
| 154 | 4-cyclohexyl-3-(methoxycarbonyl)-2-methyl-4-<br>butanolide          | 18.52   | 50  |
| 155 | (trimethyl-butyl)-cyclohexane                                       | 18.63   | 56  |
| 156 | 1,3-dioxolane-2-methanol, 2,4-dimethyl                              | 18.714  | 40  |
| 157 | 3,4-dimethyl phenol                                                 | 18.81   | 98  |

| 158 | 2,4-dimethylphenol                                                   | 18.853  | 97 |
|-----|----------------------------------------------------------------------|---------|----|
| 159 | (methoxymethyl) benzene                                              | 18.864  | 76 |
| 160 | 8-hydroxyocta-1,2-diene-4-one                                        | 18.982  | 50 |
| 161 | (E)-1-(benzyloxy)-2,3-epoxyocatane                                   | 19.09   | 46 |
| 162 | 1-(2,2-dimethylcyclobutyl)ethanone                                   | 19.132  | 47 |
| 163 | 1-methyl-3-vinyl-3-cyclohexen-1-ol                                   | 19.218  | 43 |
| 164 | 1,4,4-trimethylcyclohexa-2-en-1-ol                                   | 19.422  | 68 |
| 165 | 2-cyclohexen-1-ol, 3,5,5-trimethyl                                   | 19.454  | 47 |
| 166 | 4-methyl benzenemethanol                                             | 19.529  | 47 |
| 167 | benzoic acid ethyl ester                                             | 19.561  | 86 |
| 168 | 2-ethenyl-2-butenal                                                  | 19.647  | 64 |
| 169 | 1-methoxy-4-propyl benzene                                           | 19.658  | 93 |
| 170 | 2-(4-methoxyphenyl)ethanol                                           | 19.701  | 68 |
| 171 | 1-methyl-6-propyl phenol                                             | 19.712  | 80 |
| 172 | 7-[(tetrahydro-2H-pyran-2-yl)oxy]-2-octen-1-ol                       | 19.723  | 38 |
| 173 | 5-hexyn-1-ol                                                         | 19.776  | 42 |
| 174 | 2-methoxy-4-methyl phenol                                            | 19.97   | 99 |
| 175 | (2S,6S)-(2,6-dimethylcyclihexylidene) methanone                      | 20.012  | 74 |
| 176 | 1,2-dimethoxy benzene                                                | 20.023  | 97 |
| 177 | (2S,4S)-5,5-dimethyl-2,4-hexanediol                                  | 20.173  | 14 |
| 178 | 4-methoxy-2-methyl phenol                                            | 20.302  | 76 |
| 179 | 2-ethyl-2,5-dimethylcyclopent-2-enone                                | 20.313  | 74 |
| 180 | 2,3,4-trimethyl phenol                                               | 20.388  | 98 |
| 181 | 2,6-dimethyl-2,4-heptadiene                                          | 20.485  | 64 |
| 182 | 2-methyl cyclododecanone                                             | 20.506  | 80 |
| 183 | 4-methyl-2-methoxy nhenol                                            | 20.496- | 98 |
| 105 | +-ineutyr-z-ineutoxy phenor                                          | 20.540  | 70 |
| 184 | 1-furyl-1-ethoxy-ethanol                                             | 20.657  | 50 |
| 185 | methyl-4-pentynoate                                                  | 20.753  | 38 |
| 186 | 3,4-dihydroxyacetophenone                                            | 20.786  | 72 |
| 187 | 4-ethyl-2-methoxy phenol                                             | 20.807  | 94 |
| 188 | 2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde                       | 20.839  | 58 |
| 189 | 4-hydroxy-benzoic acid methyl ester                                  | 21.419  | 5  |
| 190 | 5,5-dimethyl-1-propyl-1,3-cyclopentadiene                            | 21.891  | 9  |
| 191 | endo, exo-3,7-dioxatetracyclodeca-9-ene                              | 21.945  | 83 |
| 192 | trans-2-nonadecene                                                   | 20.968  | 47 |
| 193 | 2,3,6-trimethyl phenol                                               | 21.419  | 95 |
| 194 | Cis-4-(tetrahydropyran-2-yloxy)cyclohex-2-enol                       | 21.44   | 47 |
| 195 | 4-propyl phenol                                                      | 21.88   | 74 |
| 196 | 1-formyl-2,2,6-trimethyl-3-cis-(3-methylbut-2-<br>enyl)5-cyclohexene | 21.966  | 46 |
| 197 | 2-(1,1-dimethylethyl)-1,4-benzenediol                                | 22.106  | 76 |
| 198 | 2-(4-methoxyphenyl)ethanol                                           | 22.154  | 90 |

| 199 | 3.4-dimethoxy toluene                                          | 22.224- | 99 |
|-----|----------------------------------------------------------------|---------|----|
| ••• |                                                                | 22.275  |    |
| 200 | 2,4,6-trimethyl phenol                                         | 22.299  | 93 |
| 201 | 3,4-dimethylanisole                                            | 22.31   | 60 |
| 202 | 5-ethoxymethyl furfural                                        | 22.4    | 64 |
| 203 | 2,3,5-trimethyl phenol                                         | 22.439  | 95 |
| 204 | 4 ethyl-4-methyl-2-cyclohexen-1-one                            | 22.492  | 60 |
| 205 | 3-ethyl guaiacol                                               | 22.503- | 66 |
| 206 | 1 4-dimethoxy-2-methyl benzene                                 | 22.514  | 87 |
| 200 | 1-(2-furanyl)-3-pentanone                                      | 22.511  | 70 |
| 208 | 2-butynedioic acid dimethyl ester                              | 22.621  | 37 |
| 200 | 2-methoxy benzeneethanol                                       | 22.021  | 87 |
| 210 | 4-ethyl-2-methoxy phenol                                       | 22.747  | 98 |
| 210 | 3 4-dimethoxy toluene                                          | 22.75   | 91 |
| 211 | 4-methoxy acetophenone                                         | 22.75   | 72 |
| 212 | 4-ethyl-2-methoxy phenol                                       | 22.943  | 93 |
| 213 | (2-phenethylcarbamoyl-ethyl)-carbamic acid, benzyl             | 22.913  | ,, |
| 214 | ester                                                          | 22.965  | 64 |
| 215 | ethenyl benzene                                                | 23.008  | 38 |
| 216 | 3,4-diethyl-2,5-dimethyl-2,4-hexadiene                         | 23.029  | 49 |
| 217 | 3,5-dihydroxy acetophenone                                     | 23.34   | 63 |
| 218 | 2,3,5-trimethyl-1,4-benzenediol                                | 23.351  | 72 |
| 219 | 4-hydroxy-2,4,5-trimethyl-2,5-cyclohexadien-1-one              | 23.383  | 47 |
| 220 | 4-methoxy-1,2-benzenediol                                      | 23.394  | 83 |
| 221 | 2 methoxy-1,4-benzenediol                                      | 23.448  | 78 |
| 222 | 8,8-dimethyl-1,9-diazabicyclo[5.5.0]decane-5,10-<br>dione      | 23.566  | 82 |
| 223 | 4-methyl-2-propylphenol                                        | 23.63   | 81 |
| 224 | 2-methylocta-2,4,6-trienedial                                  | 23.652  | 64 |
| 225 | methyl-8-oxooctanoate                                          | 23.759  | 35 |
| 226 | 2-(2-methyl-2-propenyl)cyclohexanone                           | 23.834  | 68 |
| 227 | 1-cyclohexene-1-carboxylic acid                                | 24.006  | 43 |
| 228 | 1,4-dimethoxy-2,3-diemthylbenzene                              | 24.188  | 86 |
| 229 | 4-ethyl-1,2-dimethoxy phenol                                   | 24.307  | 99 |
| 230 | 2-methoxy-4-vinylphenol                                        | 24.348  | 97 |
| 231 | heptanoic acid                                                 | 24.5    | 64 |
| 232 | 1,4-dimethoxy-2,3-dimethylbenzene                              | 24.535  | 92 |
| 233 | 5-Allyl-6-methyl-3,3a,4,6-tetrahydropyrolo[3,4-<br>c]isoxazole | 24.543  | 83 |
| 234 | 2-(3-methyl-2-butenylidene)cyclohexanone                       | 24.586  | 64 |
| 235 | 2-methoxy-4-ethyl-6-methyl phenol                              | 24.596  | 86 |
| 236 | 2-methoxy-4-propyl phenol                                      | 24.852- | 96 |
| 250 | 2 monory i propyi pilonor                                      | 24.872  | 70 |

| 237 | 2-methyl-5-(1-methylethyl) phenol                         | 24.876       | 93 |
|-----|-----------------------------------------------------------|--------------|----|
| 238 | 2,3,5,6-tetramethyl phenol                                | 24.994       | 89 |
| 239 | 1,2,3-trimethoxy benzene                                  | 25.015       | 97 |
| 240 | Cis-1-hydroxy-2-methoxy-4-propenyl benzene                | 25.079       | 64 |
| 241 | 5-methylnicotinic acid                                    | 25.187       | 59 |
| 242 | 2-methoxy-4-propyl phenol                                 | 25.23        | 87 |
| 243 | 2-methoxy-4-propyl phenol                                 | 25.262       | 76 |
| 244 | 1-(3,4-dimethoxyphenyl) ethanone                          | 25.283       | 72 |
| 245 | 8-oxa-9-azabicyclo[3.2.2]non-6-ene                        | 25.316       | 43 |
| 246 | cyclotetradecane                                          | 25.348       | 46 |
| 247 | cis-1-ethyl-2-methyl cyclopentane                         | 25.4         | 76 |
| 248 | 2,3-dimethyl-4-methoxy phenol                             | 25.477       | 64 |
| 249 | 5-methoxy-2,3,4-trimethyl phenol                          | 25.53        | 64 |
| 250 | 4-(3-hydroxy-1-propenyl)-2-methoxy phenol                 | 25.595       | 59 |
| 251 | hexanoic acid                                             | 25.67        | 52 |
| 252 | 4-D-2-methyl-3-pentanol                                   | 25.745       | 53 |
| 253 | 4,4-dimethyl heptanedioic dimethyl ester                  | 25.83        | 86 |
| 254 | 3,4-dimethoxy propiophenone                               | 25.981       | 53 |
| 255 | 1-(2,4-dihydroxy-3-propylphenyl)ethanone                  | 25.992       | 83 |
| 256 | 3,4-dimethoxy propiophenone                               | 26.014       | 52 |
| 257 | 1-(2-hydroxy-5-methoxy-4-methylphenyl) ethanone           | 26.067       | 43 |
| 258 | 1,4-dimethoxy-2,3,5-trimethyl benzene                     | 26.164       | 74 |
| 259 | 1,2,3-trimethoxy benzene                                  | 26.196       | 86 |
| 260 | 1,2-dimethoxy-4-n-propyl benzene                          | 26.28-26.322 | 98 |
| 261 | 2,6 dimethoxy phenol                                      | 26.538       | 97 |
| 262 | 4-methoxybenzoic acid_methyl_ester                        | 26.497-      | 99 |
| 202 |                                                           | 26.552       | () |
| 263 | 3-methoxychromene                                         | 26.679       | 62 |
| 264 | 5-methoxy-2,3,4-trimethyl phenol                          | 26.7         | 80 |
| 265 | 5-hepten-3-yn-2-ol, 6-methyl-5-(1-methylethyl)            | 26.711       | 76 |
| 266 | 1-(2-hydroxy-6-(methoxymethyl)phenyl) ethanone            | 26.829       | 52 |
| 267 | ethyl-2-methyl-5-cyanopenta-2,4-dienoate                  | 26.862       | 50 |
| 268 | 4-(2-methyl-cyclohex-1-enyl)-but-3-en-2-one               | 26.904       | 46 |
| 269 | 2-methoxy-5-(2'hydroxyethyl) phenol                       | 27.055       | 57 |
| 270 | 1,2,3-trimethoxy-5-methyl benzene                         | 27.093       | 99 |
| 271 | 1,2-dimethyl-2-(1-naphthyl) cyclopropane                  | 27.184       | 72 |
| 272 | 5-ethyl-1,2,3-trimethoxy benzene                          | 27.194       | 50 |
| 273 | di-t-butyl phenol                                         | 27.216       | 60 |
| 274 | 8,8-dimethyl-1,9-diazabicyclo[5.3.0]decane-5,10-<br>dione | 27.248       | 80 |
| 275 | 1,2-dimethoxy-4-n-propyl benzene                          | 27.463       | 66 |
| 276 | anisaldehyde dimethyl acetal                              | 27.509       | 52 |
| 277 | 1-methyl-2-(phenylmethyl) benzene                         | 27.527       | 52 |

| 278 | 2-hydroxy-5-methoxy benzaldehyde                                       | 27.699       | 52 |
|-----|------------------------------------------------------------------------|--------------|----|
| 279 | Isopropylidenecyclobutenone                                            | 27.742       | 50 |
| 280 | 3,4-dimethoxy propiophenone                                            | 27.774       | 68 |
| 281 | 2-(phenylethynyl) phenol                                               | 27.785       | 72 |
| 282 | 2-methoxy-4-(1-propenyl) phenol                                        | 27.836       | 96 |
| 283 | 1-(2,4-dimethoxyphenyl)-1-propanone                                    | 27.957       | 81 |
| 284 | 3,4-diethoxy benzaldehyde                                              | 28.021       | 47 |
| 285 | 4-methoxybenzoic acid, ethyl ester                                     | 28.107       | 94 |
| 286 | 5-methoxy-2,3,4-trimethyl phenol                                       | 28.182       | 94 |
| 287 | 4-methoxy-2,4,6-trimethyl cyclohexa-2,5-dienone                        | 28.204       | 74 |
| 288 | 4-hydroxy-3-methoxy benzaldehyde, vanillin                             | 28.364       | 98 |
| 289 | m-isopropylbenzoic acid                                                | 28.418       | 49 |
| 290 | (1,1-dimethylethyl)-4-methoxy-phenol                                   | 28.547       | 87 |
| 291 | 1,2,3-trimethoxy benzene                                               | 28.59        | 83 |
| 292 | 2,6-dimethoxy-4-methyl phenol                                          | 28.611       | 95 |
| 293 | 5-ethyl-1,2,3-trimethoxy benzene                                       | 28.676       | 98 |
| 294 | 5-ethyl-1,2,3-trimethoxybenzene                                        | 28.729       | 98 |
| 295 | 3-[3,4-(methylenedioxy)phenyl]propan-1-ol                              | 28.88        | 78 |
| 296 | methyl 3-methoxy-4-methyl benzoate                                     | 28.901       | 87 |
| 297 | (5R0-1-methyl-5-(1-methyl-1-ethenyl)2,3-<br>diazabicyclo[3.3.0.]octane | 28.966       | 53 |
| 298 | 1,2-dimethyl-4-(phenylmethyl) benzene                                  | 29.02        | 50 |
| 299 | 4-hydroxylbenzoic acid, methyl ester                                   | 29.152       | 98 |
| 300 | 3-hydroxy benzoic acid, methyl ester                                   | 29.233       | 87 |
| 301 | methyl-3-(5-acetyl-2-tienyl)-2-propenoate                              | 29.298       | 53 |
| 302 | (2-methoxyethoxy) benzene                                              | 29.417       | 32 |
| 303 | 4-(1,1-dimethylethyl) benzenemethanol                                  | 29.545       | 87 |
| 304 | homo-vanillin (4-hydroxy-3-methoxy-phenyl)<br>actaldehyde              | 29.653       | 72 |
| 305 | 3-isopropyl-1,2-dimethoxybenzene                                       | 29.717       | 82 |
| 306 | 3,4-dimethoxy benzaldehyde                                             | 29.797       | 96 |
| 307 | trans-methyl iso-eugenol                                               | 29.814       | 95 |
| 308 | 1-(2-ethenyl-1-cyclohexenyl)-2-methyl-2-propen-1-<br>ol                | 30.05        | 35 |
| 309 | 1,2,3,4-tetrahydro-9-propyl anthracene                                 | 30.173       | 52 |
| 310 | 2-ethoxy-3,4,6,7,8,9-hexahydro-8,8-dimethyl-6-oxo-<br>2H-chromene      | 30.19        | 59 |
| 311 | 4-ethyl syringol                                                       | 30.2         | 91 |
| 312 | tert-butyl biphenyl carboxylic acid                                    | 30.254       | 89 |
| 313 | 1,2,3-trimethoxy-5-propylbenzene                                       | 30.28-30.332 | 96 |
| 314 | 1-(4-hydroxy-3-methoxyphenyl) ethanone, acetovanillone                 | 30.393       | 96 |
| 315 | methyl 3-(5-formyl-2-furyl_)-2-propenoate                              | 30.404       | 43 |
| 316 | 3,4-dimethoxy benzeneacetic acid                                       | 30.415       | 87 |

| 317 | 3-(3,4-dimethoxyphenyl) propionic acid                                               | 30.479 | 58 |
|-----|--------------------------------------------------------------------------------------|--------|----|
| 318 | 4-hydroxybenzoic acid, methyl ester                                                  | 30.594 | 98 |
| 319 | 1,3-dimethoxy-2-(prop-2-enyl) benzene                                                | 30.683 | 60 |
| 320 | 4-hydroxy-3-methoxybenzoic acid, methyl ester                                        | 30.701 | 97 |
| 321 | propio-syringone                                                                     | 30.768 | 62 |
| 322 | 3,5-bis(1-methylethyl) phenol                                                        | 30.823 | 64 |
| 323 | 2-methoxy benzoic acid ethyl ester                                                   | 30.941 | 87 |
| 324 | 4-(ethoxymethyl)-2-methoxy phenol                                                    | 30.995 | 38 |
| 325 | 2-hydroxy-5-methoxy benzaldehyde                                                     | 31.199 | 51 |
| 326 | Homovanillyl alcohol                                                                 | 31.287 | 96 |
| 327 | 2-methoxy-4-propyl-phenol                                                            | 31.338 | 90 |
| 328 | 3,4-diethoxy benzaldehyde                                                            | 31.349 | 53 |
| 329 | 2-(2,5-dimethoxy-phenyl) propionaldehyde                                             | 31.36  | 49 |
| 330 | 3,4-diethoxy benzaldehyde                                                            | 31.392 | 46 |
| 331 | 4-vinyl syringol                                                                     | 31.692 | 64 |
| 332 | 2-acetyl-3,6-dimethyl benzoic acid                                                   | 31.821 | 49 |
| 333 | 4-propyl syringol                                                                    | 31.864 | 86 |
| 334 | syringyl aldehyde                                                                    | 31.908 | 89 |
| 335 | 3-methoxybenzyl-2,2-dimethyl propanoate                                              | 31.918 | 64 |
| 336 | ethyl vanillate                                                                      | 31.982 | 47 |
| 337 | 1-(2,5-dimethoxy-4-methylphenyl)-2-propanone                                         | 32.047 | 46 |
| 338 | trans-isoelemicin                                                                    | 32.058 | 76 |
| 339 | 1,2,3-trimethoxy-5-(2-propenyl) benzene                                              | 32.111 | 95 |
| 340 | 2,6-dimethoxy-4-(2-propenyl) phenol                                                  | 32.197 | 68 |
| 341 | 3-(3,4-dimethoxyphenyl) propionic acid                                               | 32.294 | 53 |
| 342 | 2,2-dimethoxyethoxy benzene                                                          | 32.336 | 78 |
| 343 | 3-(3,4-dimetoxyphenyl)propionic acid                                                 | 32.347 | 49 |
| 344 | (7,7-dimethyl-1-oxo-2,3,4,5,6,7-hexahydro-1H-<br>inden02-yl)acetic acid, ethyl ester | 32.42  | 50 |
| 345 | benzofuran-4(5H)-one, 6,7-dihydro-, oxime                                            | 32.433 | 48 |
| 346 | 4-hydroxy-3-methoxy benzoic acid, methyl ester                                       | 32.476 | 48 |
| 347 | 2-(2,4,5-trimethylphenyl)propylene oxide                                             | 32.573 | 93 |
| 348 | 4-hydroxy-3-methoxy propiophenone                                                    | 32.585 | 96 |
| 349 | 3,4-dimethoxy benzoic acid, methyl ester                                             | 32.734 | 92 |
| 350 | 2-(1,1-dimethyl-2-propenyl)-3,6-dimethyl pehnol                                      | 32.734 | 76 |
| 351 | 3,4-dimethoxybenzoic acid, methyl ester                                              | 32.767 | 98 |
| 352 | 2-phenoxyethyl-beta-pehnylpropionate                                                 | 32.809 | 48 |
| 353 | 2,6-dimethoxy benzoic acid, methyl ester                                             | 33.077 | 93 |
| 354 | 1,2,4-triethyl-5-methyl benzene                                                      | 33.142 | 56 |
| 355 | methyl syringate                                                                     | 33.163 | 49 |
| 356 | 3,4-dimethoxy benzaldehyde                                                           | 33.303 | 47 |
| 357 | 6-methoxy-2,2-dimethyl-1-indanone                                                    | 33.313 | 38 |
| 358 | (2,2-dimethoxyethyl) benzene                                                         | 33.464 | 52 |

| 359 | trans-4-propenyl syringol                                                     | 33.496 | 53 |
|-----|-------------------------------------------------------------------------------|--------|----|
| 360 | alpha, 4-dihydroxy-3-methoxy benzeneacetic acid methyl ester                  | 33.555 | 87 |
| 361 | 3,4-dimethoxy benzeneacetic acid                                              | 33.603 | 98 |
| 362 | 4-hydroxy-3-methoxy-benzeneacetic acid                                        | 33.883 | 76 |
| 363 | coniferyl alcohol                                                             | 33.916 | 91 |
| 364 | o-Methylmaleimycin                                                            | 33.979 | 68 |
| 365 | 2-(2-formylvinyl)azulene-1-carbaldehyde                                       | 34.022 | 46 |
| 366 | 2,2-diphenylpropionic acid                                                    | 34.086 | 52 |
| 367 | dimethyl 4-(2'-furyl)-1-methyl-2,3-dihydro-1H-<br>indole-6,7-dicarboxylate    | 34.183 | 55 |
| 368 | 4-[(4-hydroxy-3-methoxyphenoxy)methyl)]-3-<br>methoxybenzaldehyde             | 34.263 | 46 |
| 369 | 4-hydroxy-3-methoxy-phenylacetylformic                                        | 34.301 | 60 |
| 370 | 8-(biphenyl-2-ylmethyl)-5-ethyl-2,3,5,6-<br>tetrahydroimidazo[1,2-a] pyridine | 34.333 | 47 |
| 371 | tridecanoic acid, methyl ester                                                | 34.398 | 97 |
| 372 | 14-methyl-pentadecanoic acid, methyl ester                                    | 34.441 | 89 |
| 373 | 2,6-dimethoxy-4-(2-propenyl) phenol                                           | 34.678 | 91 |
| 374 | 3-(3,4-dimethoxyphenyl)-1-propanol                                            | 34.795 | 93 |
| 375 | 3,4-dimethoxy benzenepropanol                                                 | 34.842 | 86 |
| 376 | 3,4-dimethoxy benzenepropanoic acid, methyl ester                             | 35.246 | 92 |
| 377 | 3,4-dimethoxy benzenepropanoic acid, methyl ester                             | 35.299 | 94 |
| 378 | syringaldehyde                                                                | 35.309 | 97 |
| 379 | hexadecanoic acid, ethyl ester                                                | 35.568 | 99 |
| 380 | 3,4,5-benzoic acid, methyl ester                                              | 35.611 | 94 |
| 381 | 2,5-dimethoxybenzoic acid                                                     | 35.74  | 52 |
| 382 | 4-hydroxy-3,5-dimethoxy benzaldehyde                                          | 35.793 | 50 |
| 383 | 2-ethyldiphenyl methane                                                       | 36.029 | 34 |
| 384 | methyl-2-oxo-1-propyl cycloheptanecarboxylate                                 | 36.094 | 38 |
| 385 | 1-(4-hydroxy-3,5-dimethoxyphenyl) ethanone                                    | 36.652 | 96 |
| 386 | (2,2-dimethoxyethyoxy) benzene                                                | 36.695 | 54 |
| 387 | (3-methoxyphenyl) carbamic acid, methyl ester                                 | 36.802 | 42 |
| 388 | 3-(2,3,4-trimethoxypehnyl)propionic acid                                      | 36.845 | 50 |
| 389 | alpha, hydroxy-3-methoxy benzeneacetic acid, methyl ester                     | 37.017 | 35 |
| 390 | (Z)-7-phenyl-1,4-heptadien-6-yne                                              | 37.168 | 46 |
| 391 | 4-hydroxy-3,5-dimethoxybenzoic acid, methyl ester                             | 37.305 | 97 |
| 392 | syringyl acetone                                                              | 37.386 | 92 |
| 393 | Octadecanoic acid, methyl ester                                               | 38.048 | 95 |
| 394 | 2,5-dimethoxy benzoic acid                                                    | 38.155 | 72 |
| 395 | 2,2-dimethoxy benzene                                                         | 38.23  | 76 |
| 396 | ethyl 4-hydroxyphenylcarbamate                                                | 38.4   | 68 |
| 397 | o-2-benzimidazolyl phenol                                                     | 38.584 | 30 |

| Characteristic<br>m/z | Factors        | Likely Molecular Formula                                                                            | Fragment Identity                     |
|-----------------------|----------------|-----------------------------------------------------------------------------------------------------|---------------------------------------|
| 39                    | 1, 3, 6-10     | C <sub>3</sub> H <sub>3</sub>                                                                       | aromatic                              |
| 41                    | 4, 11          | C <sub>3</sub> H <sub>5</sub>                                                                       | aliphatic                             |
| 45                    | 10             | C <sub>2</sub> H <sub>5</sub> O                                                                     | aliphatic alcohol                     |
| 50                    | 1              | C <sub>4</sub> H <sub>2</sub>                                                                       | aromatic                              |
| 51                    | 3              | C <sub>4</sub> H <sub>3</sub>                                                                       | aromatic                              |
| 52                    | 10             | C <sub>4</sub> H <sub>4</sub>                                                                       | aromatic                              |
| 53                    | 7              | C <sub>3</sub> HO or C <sub>4</sub> H <sub>5</sub>                                                  | aliphatic alcohol or aliphatic        |
| 55                    | 4, 9, 11       | C <sub>4</sub> H <sub>7</sub>                                                                       | aliphatic                             |
| 63                    | 3              | C <sub>5</sub> H <sub>3</sub>                                                                       | aromatic                              |
| 65                    | 1, 6, 8, 9, 11 | C <sub>5</sub> H <sub>5</sub>                                                                       | aromatic                              |
| 69                    | 4              | C <sub>5</sub> H <sub>9</sub>                                                                       | aliphatic                             |
| 74                    | 1              | CH <sub>2</sub> =C(OH)OCH                                                                           | methyl ester                          |
| 75                    | 5              | $C_2H5O-C=O+2H^a$ or $C_2H_5COO+2H^a$                                                               | carboxylate or carboxylic             |
| 77                    | 3, 11          | C <sub>6</sub> H <sub>5</sub>                                                                       | aromatic                              |
| 79                    | 8-10           | C <sub>6</sub> H <sub>5</sub> +2H <sup>a</sup>                                                      | aromatic                              |
| 83                    | 4              | C <sub>6</sub> H <sub>11</sub>                                                                      | aliphatic                             |
| 91                    | 3, 8           | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub>                                                       | benzylic                              |
| 92                    | 10             | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> +H <sup>a</sup>                                       | benzylic                              |
| 93                    | 1,6            | C <sub>6</sub> H <sub>5</sub> O                                                                     | phenolic                              |
| 94                    | 9              | C <sub>6</sub> H <sub>5</sub> O+H <sup>a</sup>                                                      | phenolic                              |
| 95                    | 7              | C <sub>6</sub> H <sub>5</sub> O+2H <sup>a</sup>                                                     | phenolic                              |
| 97                    | 4              | C <sub>7</sub> H <sub>13</sub>                                                                      | aliphatic                             |
| 105                   | 9-11           | $C_6H_5C=O \text{ or } C_6H_5-CH_2CH_2$                                                             | benzocarbonyl or ethylbenzyl          |
| 107                   | 3, 8           | CH <sub>2</sub> C <sub>6</sub> H <sub>4</sub> OH or C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> O | benzylic alcohol or benzylic<br>ether |
| 109                   | 7              | C <sub>6</sub> H <sub>5</sub> -CH <sub>2</sub> O+2H <sup>a</sup>                                    | benzylic ether                        |
| 111                   | 4              | $C_8H_{15}$                                                                                         | aliphatic                             |
| 119                   | 8              | C <sub>6</sub> H <sub>5</sub> -C(CH <sub>3</sub> ) <sub>2</sub>                                     | isopropylbenzyl                       |
| 121                   | 6              | C <sub>6</sub> H <sub>5</sub> COO                                                                   | benzoate                              |
| 122                   | 9              | CH <sub>3</sub> OC6H4CH2                                                                            | methoxy benzyl                        |
| 137                   | 9              | CH <sub>3</sub> OC <sub>6</sub> H <sub>3</sub> OHCH <sub>2</sub>                                    | methoxy phenyl                        |
| 151                   | 8              | $(CH_3O)_2C_6H_3CH_2$                                                                               | dimethoxy benzyl                      |
| 167                   | 10             | (CH <sub>3</sub> O) <sub>2</sub> C <sub>6</sub> H2OHCH <sub>2</sub>                                 | dimethoxy phenyl                      |
| 181                   | 10             | $(CH_3O)_3C_6H_2CH_2$                                                                               | trimethoxy benzyl                     |
| 195                   | 10, 12         | $(CH_3O)_3C_6H_2CH_2CH_2$                                                                           | trimethoxy benzyl                     |

**Table S2**. List of major characteristic m/z values.<sup>1-3</sup>

<sup>a</sup>The "+H" notation means that the ion was formed by a rearrangement that involved the transfer of a hydrogen atom from some other part of the molecule.

|        | Carboralia |      | Phenolic O                                 | Н    |      | Total          | Alinhatia |
|--------|------------|------|--------------------------------------------|------|------|----------------|-----------|
| Sample | acid       | Н    | C <sub>5</sub><br>substituted <sup>*</sup> | G    | S    | Phenolic<br>OH | OH        |
| MS     | 0.18       | 0.56 | 0.16                                       | 0.84 | 2.19 | 3.75           | 1.37      |
| MIS    | 0.01       | 0.29 | 0.42                                       | 0.53 | 1.21 | 2.45           | 2.15      |

**Table S3**. Distribution of hydroxyl group contents (mmol/g) based on quantitative <sup>31</sup>P NMR data for untreated MS and MIS lignin.

\*  $C_5$  substituted:  $\beta$ -5, 4-O-5, and 5-5 substructures

| % Carbon            | MS   | MIS  |
|---------------------|------|------|
| Aliphatic C         | 6.51 | 1.96 |
| Methoxyl-aromatic C | 27.0 | 15.6 |
| Aliphatic C-O       | 3.17 | 11.6 |
| Aromatic C-H        | 15.4 | 17.3 |
| Aromatic C-C        | 8.74 | 26.6 |
| Aromatic C-O        | 37.8 | 26.0 |
| Carbonyl C          | 1.42 | 0.84 |

**Table S4.** Distribution of carbons functional group contents (percent) based on quantitative <sup>13</sup>C NMR data for untreated MS and MIS lignin.

**Table S5.** GPC detected number-average molecular weight  $(M_n)$ , weighted-average molecular weight  $(M_w)$ , and polydispersity index (PDI) of untreated and depolymerized MS lignin in non-catalyzed, MeOH, and MeOH/DMC conditions for 1-9 h. Molecular weights were determined based on a polystyrene standard calibration curve.

| MS               | M <sub>n</sub> | $\mathbf{M}_{\mathbf{w}}$ | PDI  |
|------------------|----------------|---------------------------|------|
| untreated        | 883            | 1734                      | 1.96 |
| non-catalyzed 1h | 625            | 1038                      | 1.66 |
| non-catalyzed 2h | 461            | 987                       | 2.14 |
| non-catalyzed 3h | 476            | 793                       | 1.67 |
| non-catalyzed 6h | 346            | 671                       | 1.94 |
| non-catalyzed 9h | 280            | 415                       | 1.48 |
| MeOH 1h          | 445            | 745                       | 1.67 |
| MeOH 2h          | 238            | 398                       | 1.67 |
| MeOH 3h          | 236            | 372                       | 1.58 |
| MeOH 6h          | 250            | 443                       | 1.78 |
| MeOH 9h          | 245            | 370                       | 1.51 |
| MeOH/DMC 1h      | 223            | 495                       | 2.22 |
| MeOH/DMC 2h      | 238            | 454                       | 1.91 |
| MeOH/DMC 3h      | 228            | 491                       | 2.15 |
| MeOH/DMC 6h      | 231            | 421                       | 1.82 |
| MeOH/DMC 9h      | 234            | 363                       | 1.55 |

| MIS              | Mn   | Mw   | PDI  |
|------------------|------|------|------|
| untreated        | 2923 | 7867 | 2.69 |
| non-catalyzed 1h | 480  | 779  | 1.62 |
| non-catalyzed 2h | 361  | 732  | 2.03 |
| non-catalyzed 3h | 430  | 637  | 1.48 |
| non-catalyzed 6h | 408  | 892  | 2.18 |
| non-catalyzed 9h | 296  | 463  | 1.56 |
| MeOH 1h          | 298  | 496  | 1.67 |
| MeOH 2h          | 217  | 377  | 1.74 |
| MeOH 3h          | 208  | 318  | 1.52 |
| MeOH 6h          | 228  | 452  | 1.98 |
| MeOH 9h          | 270  | 417  | 1.55 |
| MeOH/DMC 1h      | 317  | 771  | 2.43 |
| MeOH/DMC 2h      | 241  | 445  | 1.85 |
| MeOH/DMC 3h      | 247  | 513  | 2.08 |
| MeOH/DMC 6h      | 231  | 441  | 1.9  |
| MeOH/DMC 9h      | 266  | 410  | 1.54 |

**Table S6.** GPC detected  $M_n$ ,  $M_w$ , and PDI of untreated and depolymerized MIS lignin in noncatalyzed, MeOH, and MeOH/DMC conditions for 1-9 h. Molecular weights were determined based on a polystyrene standard calibration curve.

## **References:**

- 1. M. Hamming, Interpretation of mass spectra of organic compounds, Elsevier, 2012.
- 2. F. W. McLafferty and F. Turecek, *Interpretation of mass spectra*, University science books, 1993.
- 3. R. M. Silverstein, F. X. Webster, D. J. Kiemle and D. L. Bryce, *Spectrometric identification of organic compounds*, John wiley & sons, 2014.
- 4. J. A. Barrett, Y. Gao, C. M. Bernt, M. Chui, A. T. Tran, M. B. Foston and P. C. Ford, *ACS Sustainable Chemistry & Engineering*, 2016, **4**, 6877-6886.