SUPPORTING INFORMATION

Catalyst and Solvent Free Microwave Assisted Synthesis of Substituted 1,2,3-Triazoles

Sahar Roshandel, ${ }^{\text {a }}$ Suresh C. Suri, ${ }^{* a}$ Jacob C. Marcischak, ${ }^{\text {b }}$ Golam Rasul, ${ }^{\text {a }}$ G. K. Surya Prakash*a
${ }^{a}$ Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, USA. ${ }^{b}$ Air Force Research Laboratory/Rocket Propulsion Division, Edwards Air Force Base, CA, 93524, USA
E-mail gprakash@usc.edu, sureshsuri52@gmail.com

TABLE OF CONTENTS

General remarks S2
Microwave irradiation experiment S2
General procedure S2
DFT Study S3
Characterization data of all products S3
References S7
Microwave data and NMR Spectra of all products S8
X-ray Structure Determination for 16 S43

General Remarks:

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Varian 600 , 500 , and 400 MHz NMR spectrometers. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ chemical shifts were determined relative to the signal of a residual protonated solvent. ${ }^{19} \mathrm{~F}$ NMR chemical shifts were determined relative to CFCl_{3} as an internal standard (0.0 ppm). IR data was recorded on a JASCO FT/IR-4600 infrared spectrometer. HRMS (EI and ESI) analysis was performed at the School of Chemical Sciences Mass Spectrometry Laboratory, University of Illinois, Urbana-Champaign. Flash chromatographic purification of compounds was performed using a Biotage, Isolera One, accelerated chromatographic isolation (ACI) automated flash column chromatogram. All reactions mixtures were prepared under argon or nitrogen atmosphere ($\mathrm{Ar} / \mathrm{N}_{2}$ glovebox). Unless otherwise mentioned, all reagents were purchased in the highest purity from commercial sources and used without further purification.

Microwave Irradiation Experiment:

All microwave irradiation reactions were carried out in a Biotage ${ }^{\circledR}$ Initiator+ microwave reactor, operating with continuous irradiation power from 0 to 400 W and heating up to $300{ }^{\circ} \mathrm{C}$ with a cut-off of 30 bar pressure. The microwave reactor was used in the standard configuration as delivered. All reactions were carried out in a Biotage ${ }^{\circledR}$ microwave vial and sealed with an aluminum/Teflon® crimp top, which enables to bear maximum internal pressure of 30 bar. The built-in IR sensor of the instrument measures the temperature at all time. After the irradiation period, the reaction vial was cooled down to the ambient temperature by the built-in gas jet cooling before the safety cap was removed.

General Procedure:

Acetylene derivative (1.0 equivalent) and trimethylsilyl azide (1.5 equivalent) were transferred to a $0.5-2 \mathrm{~mL}$ Biotage microwave vial equipped with a magnetic stir-bar under inert condition. The vial was tightly sealed with aluminum/Teflon ${ }^{\circledR}$ crimp top and was exposed to microwave irradiation at a constant temperature of $200^{\circ} \mathrm{C}$ for the time indicated in table 2. After completion of the reaction (until no change in pressure was observed), the reaction mixture was cooled to ambient temperature. Subsequently, the reaction mixture was transferred to a beaker using diethyl ether and was exposed to air for 30 minutes. The reaction mixture was dissolved in minimum amount of hot dichloromethane and pure products were obtained by recrystallization in hexanes. Product 2, 9, and $\mathbf{1 2}$ were purified by flash silica column chromatography (25% ethyl acetate in hexanes).

CAUTION: In presence of moisture, TMSN $_{3}$ hydrolyzes to highly toxic hydrazoic acid $\left(\mathrm{HN}_{3}\right)$ and therefore all the chemicals MUST be stored free of moisture. The outlined procedures are designed for neat reactions, one must avoid using protic solvents with TMSN $_{3}$ as it readily generates $\mathbf{H N}_{3}$.

DFT Study:

Gaussian 09 program (Frisch, M. J.; et al. Gaussian 09, Revision A.02, 2009) was employed for geometry optimizations and frequency calculations. The geometries were optimized at the B3LYP/6-311+G** level. Vibrational frequencies at the B3LYP/6-311+G** level were used to characterize stationary points as minima (NIMAG (number of imaginary frequency) $=0$) or transition state $($ NIMAG $=1)$ and to evaluate zero point vibrational energies $(Z P E)$, which were scaled by a factor of 0.96. Relative energies were calculated at the B3LYP/6$311++\mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd}) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}^{* *}+$ ZPE level.

Characterization Data of All Products:

4-Phenyl-2H-1,2,3-triazole (1) ${ }^{1}$ was obtained from phenylacetylene (5 mmol) and trimethylsilyl azide and purified by recrystallization as a white solid in 99% yield (717 mg). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 8.33$ (bs, $1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 145.9,130.5,128.9,128.1,125.5$. HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3}:[\mathrm{M}+\mathrm{H}]^{+} 146.0718$, found: 146.0720. FT/IR ($v_{\max }\left(\right.$ neat $\left.\mathrm{cm}^{-1}\right) 3154,3121,2948,2822,1661,1456,971,874.765 . \mathbf{R}_{\mathrm{f}}$ (1:1-hexanes:ethylacetate): 0.36 . This reaction was also carried out with 12 mmol of phenylacetylene and the final product was obtained in 98% yield.

4-(3-Methoxyphenyl)-2H-1,2,3-triazole (2) was obtained from (3-methoxyphenyl)acetylene (4 mmol) and trimethylsilyl azide and purified by flash column chromatography as a very viscous oil in 90% yield $(630 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 12.24(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{dt}, J=7.7,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform- d) $\delta 160.2,147.5,131.2,130.2$ (contains two C signals), 118.7, 114.8, 111.5, 55.5. HRMS (ESI) calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}$: [M+H] ${ }^{+}$176.0824, found: 176.0820. FT/IR ($v_{\max }$ (neat) cm^{-1}) $3142,3100,3014,2925,2823,2661,1609,1593,1559,1486,1320,1230,1320,1230,1144,1075$, 1037, 827, 788. $\mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.29.

4-(2H-1,2,3-Triazol-4-yl)benzonitrile (3) ${ }^{1}$ was obtained from 4-ethynylbenzonitrile (3 mmol) and trimethylsilyl azide and purified by recrystallization as yellow solid in 78% yield (397 mg). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $8.56(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 144.3$, 135.1, 133.0, 126.1, 118.8, 110.3. HRMS (ESI) calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{4}:[\mathrm{M}+\mathrm{H}]^{+} 171.0671$, found: 171.0674. FT/IR ($v_{\max }$ (neat) cm^{-1}) 3130, 3007, 2962, 2864, 2231, 1614, 1523, 1472, 1425, 1359, 1299, 1226, 1181, 1081, 999, 971, 841. $\mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.23 .

4-(4-Fluorophenyl)-2H-1,2,3-triazole (4) ${ }^{1}$ was obtained from (4-fluorophenyl)acetylene (4 mmol) and trimethylsilyl azide and purified by recrystallization as a white crystalline solid in 55% yield (356 mg). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.6,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 161.9(\mathrm{~d}, J=244.7 \mathrm{~Hz}), 145.1,130.5,127.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 127.2,115.8(\mathrm{~d}, J=21.6 \mathrm{~Hz})$. ${ }^{19}$ F NMR (470 MHz , Chloroform- d) δ-113.1. HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{~F}$: $[\mathrm{M}+\mathrm{H}]^{+} 164.0624$, found: 164.0627. FT/IR ($v_{\max }($ neat $) \mathrm{cm}^{-1}$) 3148, 3119, 3044, 2973, 2858, 2775, 1910, 1610, 1534, 1465, 1228, 1160, 1134, 1096, 1003, 972, 839. $\mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate):0.34.

4-(4-Chlorophenyl)-2H-1,2,3-triazole (5) ${ }^{1}$ was obtained from (4-chlorophenyl)acetylene (4 mmol) and trimethylsilyl azide and purified by recrystallization as a white crystalline solid in 87% yield $(625 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 145.2,132.9,129.9,129.4,127.7$. HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{Cl}$: $[\mathrm{M}+\mathrm{H}]^{+} 180.0329$, found: 180.0329. FT/IR ($v_{\max }$ (neat) cm^{-1}) 3157, 3128, 2984, 2958, 2842, 2740, 1918, 1677, 1606, 1524, 1460, 1417, 1297, 1225, 1133, 1100, 1073, 970, 834. $\mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate):0.30.

4-(4-Bromophenyl)-2H-1,2,3-triazole (6) ${ }^{1}$ was obtained from (4-bromophenyl)acetylene (4 mmol) and trimethylsilyl azide and purified by recrystallization as a white crystalline solid in 88% yield (785 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 144.8,131.9,129.8,127.5,121.1$. HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{Br}:[\mathrm{M}+\mathrm{H}]^{+} 223.9823$, found: 223.9817. FT/IR ($v_{\max }$ (neat) cm^{-1}) 3154, 3124, 2988, 2950, 2838, 1922, 1602, 1458, 1411, 1336, 1133, 1070, 1003, $970,875,831 . \mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.33 .

4-(3,5-Difluorophenyl)-2H-1,2,3-triazole (7) was obtained from (3,5-difluorophenyl)acetylene (3.5 mmol) and trimethylsilyl azide and purified by recrystallization as a white solid (m.p. $157-160{ }^{\circ} \mathrm{C}$) in 82% yield (518 mg). ${ }^{1} H$ NMR (400 MHz , Chloroform- d) $\delta 11.89(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dt}, J=6.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{tt}, J=8.9$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 163.6(\mathrm{dd}, J=248.6,13.0 \mathrm{~Hz}$), $146.1,133.2(\mathrm{t}, J=10.4 \mathrm{~Hz}$), $131.2,109.2(\mathrm{dd}, J=19.6,6.5 \mathrm{~Hz}), 104.15(\mathrm{t}, J=25.4 \mathrm{~Hz}) .{ }^{19}$ F NMR (470 MHz , Chloroform- d) $\delta-109.4(\mathrm{pt}, J=$ 7.0 Hz). HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{~F}_{2}:[\mathrm{M}+\mathrm{H}]^{+} 182.0530$, found: 182.0535 . FT/IR ($v_{\max }$ (neat) cm^{-1}) $3153,3103,3077,1629,1590,1459,1437,1249,1234,1119,1076,987,840,808 . \mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.42 .

4-Cyclopropyl-2H-1,2,3-triazole (8) ${ }^{3}$ was obtained from cyclopropylacetylene (5 mmol) and trimethylsilyl azide and purified by recrystallization as a white solid in 81% yield $(441 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.52$ $(\mathrm{s}, 1 \mathrm{H}), 1.95(\mathrm{tt}, J=8.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 148.8,130.1,7.9,6.2$. HRMS (ESI) calculated for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{3}:[\mathrm{M}+\mathrm{H}]^{+} 110.0718$, found: 110.0714. FT/IR ($v_{\max }$ (neat) cm^{-1}) $3150,3118,3086,2985,2925,2876,2844,2784,1518,1455,1420,1348,1302,1230,1123,1053$, $1030,993,866 . \mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.24.

Ethyl 5-phenyl-2H-1,2,3-triazole-4-carboxylate (9) ${ }^{4}$ was obtained from ethyl 3-phenylpropiolate (3 mmol) and trimethylsilyl azide and purified by flash column chromatography as a yellow liquid that solidifies when given sufficient time in 92% yield (597 mg). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d) $\delta 13.90(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.69(\mathrm{~m}, 2 \mathrm{H})$, $7.59-7.32(\mathrm{~m}, 3 \mathrm{H}), 4.39(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) δ 161.1, 146.8, 134.6, 129.8, 129.4, 128.5, 61.9, 14.2. HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$218.0930, found: 218.0930. FT/IR ($v_{\max }\left(\right.$ neat cm^{-1}) $3169,3113,3078,3027,3005,2978,2937,2836,1718,1582,1480$, $1442,1388,1376,1320,1307,1243,1222,1173,1148,1087,922,839 . \mathbf{R}_{\mathbf{f}}(1: 1$-hexanes:ethylacetate): 0.22 .

4-(Naphthalen-1-yl)-5-(trimethylsilyl)-2H-1,2,3-triazole (10) was obtained from trimethyl(naphthalen-1ylethynyl)silane (3 mmol) and trimethylsilyl azide and purified by recrystallization as an off-white solid (m.p. $150-153{ }^{\circ} \mathrm{C}$) in 62% yield (496 mg). ${ }^{1} \mathbf{H}$ NMR (399 MHz , Chloroform-d) $\delta 13.66(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.83(\mathrm{~m}, 2 \mathrm{H})$, $7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.37(\mathrm{~m}, 4 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 151.6$, 135.4, 133.6, 133.2, 129.9, 129.2, 128.7, 128.2, 126.4, 126.3, 126.1, 124.9, -1.1. HRMS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Si}:[\mathrm{M}+\mathrm{H}]^{+}$268.1270, found: 268.1272. FT/IR ($v_{\max }$ (neat) cm^{-1}) 3116, 3056, 2945, 2897, 2812, 2781, 1593, 1537, 1385, 1304, 1250, 1180, 961, 834. $\mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate):0.30.

4,5-Diphenyl-2H-1,2,3-triazole (11) ${ }^{1}$ was obtained from diphenylacetylene (5 mmol) and trimethylsilyl azide and purified by recrystallization as a white solid in 84% yield (927 mg). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta 7.50$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 143.0,131.2,128.7,128.2,127.9$. HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3}:[\mathrm{M}+\mathrm{H}]^{+}$222.1031, found: 222.1030. FT/IR ($v_{\max }$ (neat) cm^{-1}) 3088, 3064, 3019, 2987, 2921, 2884, 2834, 2808, 2748, 1604, 1584, 1516, 1490, 1441, 1382, 1227, 1210, 1121, 998, 910 , 855. $\mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.38 .

Diethyl 2H-1,2,3-triazole-4,5-dicarboxylate (12) ${ }^{5}$ was obtained from dimethyl acetylenedicarboxylate (1 mmol) and trimethylsilyl azide purified by flash column chromatography as a pale yellow oil in 97% yield (206 mg). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 4.46(\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 160.2,138.8,62.6,14.2$. HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}:[\mathrm{M}+\mathrm{H}]^{+} 214.0828$, found: 214.0834. FT/IR ($v_{\max }$ (neat) cm^{-1}) 3186, 2985, 2938, 2906, 2872, 1731, 1574, 1500, 1472, 1428, 1300, 1222, 1084, 1013, 988, 856, 831. $\mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.22 .

4-Cyclopropyl-5-(trimethylsilyl)-2H-1,2,3-triazole (13) ${ }^{6}$ was obtained from (cyclopropylethynyl)trimethylsilane (3 mmol) and trimethylsilyl azide and purified by recrystallization as off-white solid in 33% yield $(180 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 1.89(\mathrm{tt}, J=8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.05-0.91(\mathrm{~m}, 4 \mathrm{H}), 0.39(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13}$ C NMR (126 MHz , Chloroform- d) δ 154.3, 134.9, 7.9, 7.2, -1.0. HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{Si}$: $[\mathrm{M}+\mathrm{H}]^{+}$182.1113, found: 182.1116. FT/IR ($v_{\max }\left(\right.$ neat cm^{-1}) 3100, 3053, 3002, 2960, 2906, 2781, 2649, 1543, $1348,1327,1258,1176,1132,1052,1013,999,891,835 . \mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.34 .

4-Propyl-5-(trimethylsilyl)-2H-1,2,3-triazole (14) was obtained from 1-trimethylsilyl-1-pentyne (3 mmol) and trimethylsilyl azide and purified by recrystallization as a white solid (m.p. $107-109^{\circ} \mathrm{C}$) in 57% yield $(312 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 12.78(\mathrm{~s}, 1 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.35$ (s, 9H). ${ }^{13} \mathbf{C}$ NMR (126 MHz , Chloroform- d) $\delta 153.0,131.0,28.2,23.9,14.0,-0.8$. HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Si}:[\mathrm{M}+\mathrm{H}]^{+}$184.1270, found: 184.1276. FT/IR ($v_{\max }$ (neat) cm^{-1}) 3129, 3053, 2958, 2931, $2871,1463,1359,1250,1219,1176,1123,1011,839 . \mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.35.

4-Ethyl-5-phenyl-2H-1,2,3-triazole (15) ${ }^{1}$ was obtained from 1-phenyl-1-butyne (4 mmol) and trimethylsilyl azide and purified by recrystallization as a white crystalline solid in 92% yield (640 mg). ${ }^{1} \mathbf{H} \mathbf{N M R}(399 \mathrm{MHz}$, Chloroform- d) $\delta 11.95(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 144.1,130.9,128.9$, 128.3, 127.6, 19.0, 13.4. HRMS (ESI) calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3}:[\mathrm{M}+\mathrm{H}]^{+}$174.1026, found: 174.1031. FT/IR (vmax (neat) cm^{-1}) $3078,3006,2975,2935,2880,2639,2574,2515,1818,1598,1475,1448,1247,1217,1076,1046,1023$, $1217,1009,993,923 . \mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.34 .

4,5-Bis(trimethylsilyl)- $\mathbf{H} \boldsymbol{H} \mathbf{- 1 , 2 , 3 - t r i a z o l e}$ (16) ${ }^{7}$ was obtained from 1,2-bis(trimethylsilyl)ethyne (3 mmol) and trimethylsilyl azide and purified by recrystallization as a white crystals in 61% yield (392 mg). ${ }^{1} \mathbf{H}$ NMR (600 MHz, Chloroform- d) $\delta 0.38(\mathrm{pd}, J=3.9 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz , Chloroform- d) $\delta 150.6,139.7,-0.02$. HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{Si}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$214.1196, found: 214.1200 FT/IR ($\mathrm{v}_{\text {max }}$ (neat) cm^{-1}) 3110, 2953, 2867, 1412, 1251, 1213, 1143, 1104, 1071, 1014, 826. $\mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.41 .

1-Methyl-4,5-bis(trimethylsilyl)-1H-1,2,3-triazole (17) ${ }^{7}$ was obtained from overnight stirring of $\mathbf{1 6}$ (0.25 mmol), methyl iodide (0.375 mmol), and potassium carbonate (0.5 mmol) in 2 mL DMF after silica column purification in 82% yield $(46.6 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 4.15(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 9 \mathrm{H}), 0.39(\mathrm{~s}$, 9H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, Chloroform- d) $\delta 153.8,140.2,37.9,0.8,0.7 . \mathbf{R}_{\mathbf{f}}$ (1:1-hexanes:ethylacetate): 0.42.

$=698$ (s), 768

1 X.-J. Quan, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Org. Lett., 2014, 16, 5728-5731.
2 X. Wang, C. Kuang and Q. Yang, Eur. J. Org. Chem, 2012, 424-428.
3 J. Wen, L.-L. Zhu, Q.-W. Bi, Z.-Q. Shen, X.-X. Li, X. Li, Z. Wang and Z. Chen, Chem. Eur. J., 2014, 20, 974-978.
4 R. Hui, M. Zhao, M. Chen, Z. Ren and Z. Guan, Chin. J. Chem., 2017, 35, 1808-1812.
5 T. Hitomi and S. Kozima, J. Organomet. Chem., 1977, 127, 273-280.
6 L. Hu, C. Mück-Lichtenfeld, T. Wang, G. He, M. Gao and J. Zhao, Chem. Eur. J., 2016, 22, 911-915.
7 X. Wang, L. Zhang, D. Krishnamurthy, C. H. Senanayake and P. Wipf, Org. Lett., 2010, 12, 4632-4635.

Microwave data and NMR spectra of 4-Phenyl-2H-1,2,3-triazole (1)

$\left.\begin{array}{llllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ f 1 \\ (\mathrm{ppm})\end{array}\right)$

Microwave data and NMR spectra of 4-(3-Methoxyphenyl-2H-1,2,3-triazole (2)

Microwave data and NMR spectra of 4-(2H-1,2,3-Triazol-4-yl)benzonitrile (3)

Proton-DMSO-d6

NC

Carbon-DMSO-d6

Microwave data and NMR spectra of 4-(4-Fluorophenyl)-2H-1,2,3-triazole (4)

Microwave data and NMR spectra of 4-(4-Chlorophenyl)-2H-1,2,3-triazole (5)

Proton-DMSO-d6

Microwave data and NMR spectra of 4-(4-Bromophenyl)-2H-1,2,3-triazole (6)

Microwave data and NMR spectra of 4-(3,5-Difluorophenyl)-2H-1,2,3-triazole (7)

(s)

Microwave data and NMR spectra of 4-Cyclopropyl-2H-1,2,3-triazole (8)

Microwave data and NMR spectra of Ethyl 5-phenyl-2H-1,2,3-triazole-4-carboxylate (9)

Microwave data and NMR spectra of 4-(Naphthalen-1-yl)-5-(trimethylsilyl)-2H-1,2,3triazole (10)

Protenn-CDC13

1,1

Microwave data and NMR spectra of 4,5-Diphenyl-2H-1,2,3-triazole (11)

Microwave data and NMR spectra of Diethyl 2H－1，2，3－triazole－4，5－dicarboxylate（12）

ま寸な等
$\stackrel{\text { 「9\％}}{\square}$

Microwave data and NMR spectra of 4-Cyclopropyl-5-(trimethylsilyl)-2H-1,2,3-triazole (13)

Proton-CDC13

Microwave data and NMR spectra of 4-Propyl-5-(trimethylsilyl)-2H-1,2,3-triazole (14)

Proton-CDCI30

$\begin{array}{llllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

Microwave data and NMR spectra of 4-Ethyl-5-phenyl-2H-1,2,3-triazole (15)

Microwave data, NMR spectra, and Variant Temperature Study of 4,5-Bis(trimethylsilyl)-1H-1,2,3-triazole (16)

$\begin{array}{ll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{lll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

NMR spectra of 1-methyl-4,5-bis(trimethylsilyl)-1H-1,2,3-triazole (17)

Proton-CDC13- CRUDE SPECTRUM
亮

Proton-CDCI3

After Purification

X-ray Structure Determination for 16:

A prism-like specimen of $\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Si}_{2}$ was used for the X-ray crystallographic analysis. The Xray intensity data were measured on a Bruker APEX DUO system equipped with a TRIUMPH curved-crystal monochromator and a MoK α fine-focus tube ($\lambda=0.71073 \AA$).

A total of 2520 frames were collected. The total exposure time was 7.00 hours. The frames were integrated with the Bruker SAINT software package using a SAINT V8.34A (Bruker AXS, 2013) algorithm. The integration of the data using a monoclinic unit cell yielded a total of 24848 reflections to a maximum θ angle of 27.48° ($0.77 \AA$ resolution), of which 2950 were independent (average redundancy 8.423 , completeness $=99.7 \%, \mathrm{R}_{\text {int }}=4.44 \%, \mathrm{R}_{\text {sig }}=2.30 \%$) and $2747(93.12 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=6.7038(11) \AA, \underline{b}=9.1027(15) \AA, \underline{c}=21.146(3) \AA, \beta=91.335(2)^{\circ}$, volume $=1290.0(4) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9881 reflections above $20 \sigma(\mathrm{I})$ with $4.872^{\circ}<2 \theta<61.00^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.824 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P $121 / \mathrm{c} 1$, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Si}_{2}$. The final anisotropic fullmatrix least-squares refinement on F^{2} with 127 variables converged at $\mathrm{R}_{1}=6.55 \%$, for the observed data and $w \mathrm{R}_{2}=16.65 \%$ for all data. The goodness-of-fit was 1.046. The largest peak in the final difference electron density synthesis was $1.013 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.440 \mathrm{e}^{-}$ $/ \AA^{3}$ with an RMS deviation of $0.098 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.099 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 464 \mathrm{e}^{-}$.

Table S1. Sample and crystal data for compound 16

Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{Si}_{2}$	
Formula weight	$213.44 \mathrm{~g} / \mathrm{mol}$	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	monoclinic	
Space group	$\mathrm{P} 121 / \mathrm{c} 1$	
Unit cell dimensions	$\mathrm{a}=6.7038(11) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=9.1027(15) \AA$	$\beta=91.335(2)^{\circ}$
	$\mathrm{c}=21.146(3) \AA$	$\gamma=90^{\circ}$
Volume	$1290.0(4) \AA^{3}$	
Z	4	
Density (calculated)	$1.099 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.243 \mathrm{~mm}^{-1}$	
$\mathrm{~F}(000)$	464	

Table S2. Data collection and structure refinement for compound 16

Diffractometer	Bruker APEX DUO
Radiation source	fine-focus tube, $\mathrm{MoK} \alpha$
Theta range for data collection	1.93 to 27.48°
Index ranges	$-8<=\mathrm{h}<=8,-11<=\mathrm{k}<=11,-27<=1<=27$
Reflections collected	24848
Independent reflections	$2950[\mathrm{R}(\mathrm{int})=0.0444]$
Coverage of independent reflections	99.7\%
Absorption correction	multi-scan
Structure solution technique	direct methods
Structure solution program	SHELXTL XT 2014/4 (Bruker AXS, 2014)
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXTL XL 2014/7 (Bruker AXS, 2014)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	2950 / 0 / 127
Goodness-of-fit on F^{2}	1.046
Final R indices	2747 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0655, \mathrm{wR} 2=0.1652$
	all data $\quad \mathrm{R} 1=0.0685, \mathrm{wR} 2=0.1665$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\mathrm{\sigma}^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)+(0.0196 \mathrm{P})^{2}+8.9477 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	1.013 and -0.440 e \AA^{-3}
R.M.S. deviation from mean	$0.098 \mathrm{e}^{\text {A }}$ -

Table S3. Bond lengths (\AA) for compound 16

C1-N3	$1.363(4)$	C5-H5C	0.98	C1-C2	$1.398(5)$	C6-Si2	$1.869(4)$
C1-Si1	$1.897(3)$	C6-H6A	0.98	C2-N1	$1.385(4)$	C6-H6B	0.98
C2-Si2	$1.880(3)$	C6-H6C	0.98	C3-Si1	$1.864(4)$	C7-Si2	$1.864(4)$
C3-H3A	0.98	C7-H7A	0.98	C3-H3B	0.98	C7-H7B	0.98
C3-H3C	0.98	C7-H7C	0.98	C4-Si1	$1.870(4)$	C8-Si2	$1.873(4)$
C4-H4A	0.98	C8-H8A	0.98	C4-H4B	0.98	C8-H8B	0.98
C4-H4C	0.98	C8-H8C	0.98	C5-Si1	$1.870(4)$	N1-N2	$1.321(4)$
C5-H5A	0.98	N2-N3	$1.339(4)$	C5-H5B	0.98	N3-H1	$0.86(5)$

Table S4. Bond angles $\left({ }^{\circ}\right)$ for compound 16

N3-C1-C2	$103.7(3)$	N3-C1-Si1	$121.5(3)$
C2-C1-Si1	$134.7(3)$	N1-C2-C1	$107.5(3)$
N1-C2-Si2	$119.5(2)$	C1-C2-Si2	$132.9(3)$
Si1-C3-H3A	109.5	Si1-C3-H3B	109.5
H3A-C3-H3B	109.5	Si1-C3-H3C	109.5
H3A-C3-H3C	109.5	H3B-C3-H3C	109.5

Si1-C4-H4A	109.5	Si1-C4-H4B	109.5
H4A-C4-H4B	109.5	Si1-C4-H4C	109.5
H4A-C4-H4C	109.5	H4B-C4-H4C	109.5
Si1-C5-H5A	109.5	Si1-C5-H5B	109.5
H5A-C5-H5B	109.5	Si1-C5-H5C	109.5
H5A-C5-H5C	109.5	H5B-C5-H5C	109.5
Si2-C6-H6A	109.5	Si2-C6-H6B	109.5
H6A-C6-H6B	109.5	Si2-C6-H6C	109.5
H6A-C6-H6C	109.5	H6B-C6-H6C	109.5
Si2-C7-H7A	109.5	Si2-C7-H7B	109.5
H7A-C7-H7B	109.5	Si2-C7-H7C	109.5
H7A-C7-H7C	109.5	H7B-C7-H7C	109.5
Si2-C8-H8A	109.5	Si2-C8-H8B	109.5
H8A-C8-H8B	109.5	Si2-C8-H8C	109.5
H8A-C8-H8C	109.5	H8B-C8-H8C	109.5
N2-N1-C2	$109.4(3)$	N1-N2-N3	$106.9(3)$
N2-N3-C1	$112.5(3)$	N2-N3-H1	$118 .(3)$
C1-N3-H1	$128 .(3)$	C3-Si1-C5	$111.13(18)$
C3-Si1-C4	$108.15(17)$	C5-Si1-C4	$112.09(17)$
C3-Si1-C1	$107.82(16)$	C5-Si1-C1	$107.18(16)$
C4-Si1-C1	$110.39(16)$	C7-Si2-C6	$109.66(19)$
C7-Si2-C8	$108.01(18)$	C6-Si2-C8	$111.16(19)$
C7-Si2-C2	$108.62(16)$	C6-Si2-C2	$109.96(16)$
C8-Si2-C2	$109.37(17)$		

